
www.manaraa.com

www.manaraa.com

Lecture Notes in Computer Science 7141
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

www.manaraa.com

Farhad Arbab Marjan Sirjani (Eds.)

Fundamentals
of Software Engineering
4th IPM International Conference, FSEN 2011
Tehran, Iran, April 20-22, 2011
Revised Selected Papers

13

www.manaraa.com

Volume Editors

Farhad Arbab
Centre for Mathematics
and Computer Science (CWI)
Science Park 123
1098 XG Amsterdam
The Netherlands
E-mail: farhad@cwi.nl

Marjan Sirjani
Reykjavik University
Menntavegur 1
Reykjavik 101
Iceland
E-mail: marjan@ru.is

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-29319-1 e-ISBN 978-3-642-29320-7
DOI 10.1007/978-3-642-29320-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012935110

CR Subject Classification (1998): D.2, D.2.4, F.4.1, D.2.2, F.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.manaraa.com

Preface

The present volume contains the proceedings of the 4th IPM International Con-
ference on Fundamentals of Software Engineering (FSEN), held in Tehran, Iran,
during April 20–22, 2011. This event, FSEN 2011, was organized by the School
of Computer Science at the Institute for Studies in Fundamental Sciences (IPM)
in Iran, in cooperation with the ACM SIGSOFT and IFIP WG 2.2.

The topics of interest of FSEN span all aspects of formal methods, especially
those related to advancing the application of formal methods in the software
industry and promoting their integration with practical engineering techniques.
The Program Committee of FSEN 2011 consisted of 35 top researchers from
24 different academic institutes in 13 countries. We received a total of 64 sub-
missions from 28 countries out of which the Program Committee selected 19 as
regular papers, 5 as short papers, and three as poster presentations in the con-
ference program. Each submission was reviewed by at least three independent
referees, for its quality, originality, contribution, clarity of presentation, and its
relevance to the conference topics. This volume contains the post-event versions
of the regular and the short papers of FSEN 2011.

Three distinguished keynote speakers delivered their lectures at FSEN 2011:
“Proposition Algebra and Short-Circuit Logic” by Jan Bergstra, “Towards Spec-
ification Inference” by Carlo Ghezzi, and “Model Checking—One Can Do Much
More Than You Think” by Joost-Pieter Katoen.

We thank the Institute for Studies in Fundamental Sciences (IPM), Tehran,
Iran, for their financial support and local organization of FSEN 2011. We thank
the members of the Program Committee for their time, effort, and contributions
to making FSEN a quality conference. We thank Hossein Hojjat for his help
in preparing this volume. Last but not least, our thanks go to our authors and
conference participants, without whose submissions and participation, FSEN
would not have been possible.

October 2011 Farhad Arbab
Marjan Sirjani

www.manaraa.com

Conference Organization

General Chair

Hamid Sarbazi-azad IPM, Iran
Sharif University of Technology, Iran

Steering Committee

Farhad Arbab CWI, The Netherlands
Leiden University, The Netherlands

Christel Baier University of Dresden, Germany
Frank de Boer CWI, The Netherlands

Leiden University, The Netherlands
Ali Movaghar IPM, Iran

Sharif University of Technology, Iran
Jan Rutten CWI, The Netherlands

Radboud University Nijmegen,
The Netherlands

Hamid Sarbazi-azad IPM, Iran
Sharif University of Technology, Iran

Marjan Sirjani Reykjav́ık University, Iceland
University of Tehran, Iran

Program Chairs

Farhad Arbab CWI, The Netherlands
Leiden University, The Netherlands

Marjan Sirjani Reykjav́ık University, Iceland
University of Tehran, Iran

Program Committee

Luca Aceto Reykjav́ık University, Iceland
Gul Agha University of Illinois at Urbana - Champaign,

USA
Farhad Arbab CWI, The Netherlands

Leiden University, The Netherlands
Jos Baeten Eindhoven University of Technology,

The Netherlands
Christel Baier University of Dresden, Germany
Frank de Boer CWI, The Netherlands

Leiden University, The Netherlands

www.manaraa.com

VIII Conference Organization

Marcello M. Bonsangue CWI, The Netherlands
Leiden University, The Netherlands

Mario Bravetti University of Bologna, Italy
James C. Browne University of Texas at Austin, USA
Einar Broch Johnsen University of Oslo, Norway
Michael Butler University of Southampton, UK
Dave Clarke Katholieke University Leuven, Belgium
Wan Fokkink Vrije Universiteit Amsterdam, The Netherlands
Masahiro Fujita University of Tokyo, Japan
Maurizio Gabbrielli University of Bologna, Italy
Jan Friso Groote Technical University of Eindhoven,

The Netherlands
Radu Grosu State University of New York at Stony Brook,

USA
Ramtin Khosravi University of Tehran, Iran
Joost Kok Leiden University, The Netherlands
Kim Larsen Aalborg University, Denmark
Zhiming Liu United Nations University, Macao, China
Sun Meng Peking University, China
Seyyed Hassan Mirian Sharif University of Technology, Iran
Ugo Montanari University of Pisa, Italy
Peter Mosses Swansea University, UK
Mohammadreza Mousavi Technical University of Eindhoven,

The Netherlands
Ali Movaghar IPM, Iran

Sharif University of Technology, Iran
Andrea Omicini University of Bologna, Italy
Saeed Parsa Iran University of Science and Technology, Iran
Hiren Patel University of Waterloo, Canada
Jan Rutten CWI, The Netherlands

Radboud University Nijmegen,
The Netherlands

Davide Sangiorgi University of Bologna, Italy
Marjan Sirjani Reykjav́ık University, Iceland

University of Tehran, Iran
Carolyn Talcott SRI International, USA
Erik De Vink Technical University of Eindhoven,

The Netherlands

Local Organization

Hamidreza Shahrabi IPM, Iran

www.manaraa.com

Conference Organization IX

External Reviewers

Amadio, Roberto M.
Andova, Suzana
Astefanoaei, Lacramioara
Atif, Muhammad
Bartocci, Ezio
Beek, Bert Van
Bella, Giampaolo
Bertolini, Cristiano
Birgisson, Arnar
Bodei, Chiara
Bonifacio, Adilson
Buchanan, Nathan
Colley, John
Corradini, Andrea
Costa, David
Davari, Iman
Dixit, Ketan
Dovland, Johan
Edmunds, Andy
Ferrari, Gian Luigi
Gadducci, Fabio
Ghamarian, Amir Hossein
Ghassemi, Fatemeh
Giachino, Elena
Grabe, Immo
Haghighi, Hassan
Hansen, Helle Hvid
Helvensteijn, Michiel
Hooman, Jozef
Huang, Xiaowan
Izadi, Mohammad
Jaghoori, Mohammad Mahdi
Jahangard, Amir
Karmani, Rajesh
Kashif, Hany
Katoen, Joost-Pieter
Keiren, Jeroen J.A.
Keramati, Hossein

König, Barbara
Kop, Cynthia
Korthikanti, Vijay Anand
Kyas, Marcel
Lanese, Ivan
Li, Xiaoshan
Lienhardt, Michael
Lluch Lafuente, Alberto
Markovski, Jasen
Mauro, Jacopo
Melgratti, Hernan
Montesi, Fabrizio
Moon, Young-Joo
Murthy, Abhishek
Mller, Mikael H.
Nyman, Ulrik
Osaiweran, Ammar
Palomino, Miguel
Papaspyrou, Nikolaos
Prakash, Aayush
Raffelsieper, Matthias
Rafnsson, Willard
Reniers, Michel
Rezazadeh, Abdolbaghi
Sabouri, Hamideh
Schlatte, Rudolf
Schäf, Martin
Shu, Qin
Silva, Alexandra
Sinha, Rohit
Snook, Colin
Stolz, Volker
Valencia, Frank
Wang, Hao
Willemse, Tim
Zhao, Liang
Zuppiroli, Sara

www.manaraa.com

Table of Contents

Model Checking: One Can Do Much More Than You Think! 1
Joost-Pieter Katoen

Proposition Algebra and Short-Circuit Logic . 15
Jan A. Bergstra and Alban Ponse

Decompositional Reasoning about the History of Parallel Processes 32
Luca Aceto, Arnar Birgisson, Anna Ingólfsdóttir, and
MohammadReza Mousavi

A Model-Based Development Approach for Model Transformations 48
Shekoufeh Kolahdouz-Rahimi and Kevin Lano

Analyzing Component-Based Systems on the Basis of Architectural
Constraints . 64

Christian Lambertz and Mila Majster-Cederbaum

Constructive Development of Probabilistic Programs 80
Hassan Haghighi and Mohammad Mahdi Javanmard

Composing Real-Time Concurrent Objects: Refinement, Compatibility
and Schedulability . 96

Mohammad Mahdi Jaghoori

Specification Guidelines to Avoid the State Space Explosion Problem . . . 112
Jan Friso Groote, Tim W.D.M. Kouters, and Ammar Osaiweran

Strong Normalisation in λ-Calculi with References 128
Romain Demangeon, Daniel Hirschkoff, and Davide Sangiorgi

Compositional Reasoning for Markov Decision Processes
(Extended Abstract) . 143

Yuxin Deng and Matthew Hennessy

Safe Locking for Multi-threaded Java . 158
Einar Broch Johnsen, Thi Mai Thuong Tran, Olaf Owe, and
Martin Steffen

Analysing the Control Software of the Compact Muon Solenoid
Experiment at the Large Hadron Collider . 174

Yi-Ling Hwong, Vincent J.J. Kusters, and Tim A.C. Willemse

A Distributed Logic for Networked Cyber-Physical Systems 190
Minyoung Kim, Mark-Oliver Stehr, and Carolyn Talcott

www.manaraa.com

XII Table of Contents

Reachability Analysis of Non-linear Planar Autonomous Systems 206
Hallstein Asheim Hansen, Gerardo Schneider, and Martin Steffen

Attacking the Dimensionality Problem of Parameterized Systems via
Bounded Reachability Graphs . 221

Qiusong Yang, Bei Zhang, Jian Zhai, and Mingshu Li

Refinement-Based Modeling of 3D NoCs . 236
Maryam Kamali, Luigia Petre, Kaisa Sere, and Masoud Daneshtalab

Towards Model-Based Testing of Electronic Funds Transfer Systems 253
Hamid Reza Asaadi, Ramtin Khosravi,
MohammadReza Mousavi, and Neda Noroozi

Relating Modal Refinements, Covariant-Contravariant Simulations and
Partial Bisimulations . 268

Luca Aceto, Ignacio Fábregas, David de Frutos Escrig,
Anna Ingólfsdóttir, and Miguel Palomino

Decidability of Behavioral Equivalences in Process Calculi with Name
Scoping . 284

Chaodong He, Yuxi Fu, and Hongfei Fu

Rewriting Approximations for Properties Verification over CCS
Specifications . 299

Roméo Courbis

Type Checking Cryptography Implementations . 316
Manuel Barbosa, Andrew Moss, Dan Page, Nuno F. Rodrigues, and
Paulo F. Silva

Intentional Automata: A Context-Dependent Model for Component
Connectors (Extended Abstract) . 335

David Costa, Milad Niqui, and Jan Rutten

Nested Dynamic Condition Response Graphs . 343
Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats

Efficient Verification of Evolving Software Product Lines 351
Hamideh Sabouri and Ramtin Khosravi

Extending Interface Automata with Z Notation . 359
Zining Cao and Hui Wang

A Specification Language for Reo Connectors . 368
Alexandra Silva

Author Index . 377

www.manaraa.com

Model Checking:

One Can Do Much More Than You Think!

Joost-Pieter Katoen1,2

1 RWTH Aachen University, Software Modelling and Verification Group, Germany
2 University of Twente, Formal Methods and Tools, The Netherlands

Abstract. Model checking is an automated verification technique that
actively is applied to find bugs in hardware and software designs. Com-
panies like IBM and Cadence developed their in-house model checkers,
and acted as driving forces behind the design of the IEEE-standardized
temporal logic PSL. On the other hand, model checking C-, C#- and .NET-
program code is an intensive research topic at, for instance, Microsoft and
NASA. In this short paper, we briefly discuss three non-standard applica-
tions of model checking. The first example is taken from systems biology
and shows the relevance of probabilistic reachability. Then, we show how
to determine the optimal scheduling policy for multiple-battery systems
so as to optimize the system’s lifetime. Finally, we discuss a stochastic
job scheduling problem that —thanks to recent developments— can be
solved using model checking.

1 Introduction

Despite the scepticism in the early eighties, it is fair to say that model checking
is scientifically a big success. Important prizes have been awarded to prominent
researchers in model checking. Examples are the Paris Kanellakis Award 1998
which was awarded to Bryant, Clarke, Emerson, and McMillan for their invention
of “symbolic model checking”, the Gödel prize 2000—the equivalent of the Nobel
prize in Mathematics— that was awarded to Vardi and Wolper for their work
on model checking with finite automata, and last but not least, the Nobel prize
in Computer Science, the ACM Turing Award 2007, that was granted to the
inventors of model checking, Clarke, Emerson, and Sifakis. The impact of model
checking tools is clearly demonstrated by the ACM System Software Award
2001, granted to Holzmann, for his model checker SPIN, “a popular open-source
software tool, used by thousands of people worldwide, that can be used for
the formal verification of distributed software systems”. Other winners of this
prestigious award are, e.g., TeX, Postscript, unix, TCP/IP and Java, to mention
a few.

Model checking is based on an exhaustive state space search; in fact, checking
whether a set of target states is reachable from a given state is at the heart of
various model-checking algorithms. The prime usage of model checking [6,2,8]
is bug hunting: finding flaws in software programs, hardware designs, commu-
nication protocols, and the like. The feature of model checkers to generate a

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 1–14, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

2 J.-P. Katoen

counterexample in case a property is refuted is extremely useful and turns model
checking into an intelligent and powerful debugging technique. This feature com-
bined with an abstraction-refinement loop is currently main stream in software
verification. Success stories include the demonstration of conceptual bugs in an
international standard proposal for a cache coherence protocol, catching a fa-
tal flaw in the Needham-Schröder authentication protocol, but also the usage
of model checking in designing device drivers in recent Microsoft operating sys-
tems, and highly safety-critical NASA space missions. The fact that the Property
Specification Language (PSL), basically a derivative of linear temporal logic en-
riched with regular expressions, has become an IEEE standard since 2005 for
specifying properties or assertions about hardware designs, is a clear sign that
formal verification techniques such as model checking have significantly gained
popularity and importance.

Model checking can however be applied to various problems of a completely
different nature. It can be used for instance to solve combinatorial puzzles such
as the famous Chapman puzzle [7] and Sudoku problems. In the rest of this short
paper, we will discuss three non-standard applications of model checking. The
first example is taken from systems biology and shows the relevance of prob-
abilistic reachability. Then, we show how to determine the optimal scheduling
policy for multiple-battery systems. Finally, we discuss a stochastic scheduling
problem that—thanks to quite recent developments—can be solved using model
checking. All examples share that the models and properties that we will check
are quantitative. This is an important deviation from traditional model check-
ing that focuses on functional correctness of models. It is our firm belief that
quantitative model checking will gain importance in the (near) future and will
become a technique that is highly competitive in comparison to standard solution
techniques for quantitative problems.

2 Systems Biology: Enzyme Kinetics

Enzyme kinetics investigates of how enzymes (E) bind substrates (S) and turn
them into products (P). About a century ago, Henri considered enzyme reac-
tions to take place in two stages. First, the enzyme binds to the substrate,
forming the enzyme-substrate complex. This substrate binding phase catalyses
a chemical reaction that releases the product. Enzymes can catalyse up to sev-
eral millions of reactions per second. Rates of kinetic reactions are obtained from
enzyme assays, and depend on solution conditions and substrate concentration.
The enzyme-substrate catalytic substrate conversion reaction is described by the
stoichiometric equation:

E + S
k1�
k2

C k3−−→E + P

where ki is the Michaelis-Menten constant for reaction i, which is the substrate
concentration required for an enzyme to reach one-half of its maximum reaction
rate. Now let us suppose we have N different types of molecules that randomly

www.manaraa.com

Model Checking: One Can Do Much More Than You Think! 3

collide. The state X(t) of the biological system at time instant t ∈ R�0 is given
by X(t) = (x1, . . . , xN) where xi denotes the number of species of sort i. In the
enzyme-catalytic substrate conversion case, N=4 and i ∈ {C,E, P, S }. Let us
number the types of reaction, e.g., E+S → C and C → E+S could be the first
and second reaction, respectively. The reaction probability of reaction m within
the infinitesimally small time-interval [t, t+Δ) with Δ ∈ R�0 is given by:

αm(x) ·Δ = Pr{reaction m in [t, t+Δ) | X(t) = x}

where αm(x) = km · the number of possible combinations of reactant molecules
in x. For instance, in state (xE , xS , xC , xP) where xi > 0 for all i ∈ {E, S,C, P},
the reactionE+S → C happens with rate αm(x) = k1·xE ·xS and yields the state
(xE−1, xS−1, xC+1, xP). This stochastic process possesses the Markov property,
i.e., its future is completely described by the current state of the system. More-
over, it is time-homogeneous, i.e., its behaviour is invariant with respect to time
shifts. In fact, it is a continuous-time Markov chain (CTMC, for short).

Fig. 1. CTMC for enzyme-catalytic substrate conversion for initially 2 enzyme and 4
substrate species with k1 = k2 = 1 and k3 = 0.001. The transition labels are rates of
exponential distributions, i.e., the reciprocal of the average duration of a reaction.

Let us now consider the following question: given a certain concentration of
enzymes and substrates, what is the likelihood that after four days all sub-
strates have engaged in a catalytic step and resulted in products? In terms of
the CTMC, this boils down to determining the probability that starting from
the state (xE , xS , 0, 0) we can reach a state of the form (xE , 0, 0, xP) within four
days. This is a so-called time-bounded reachability property that we can tackle
by model checking thanks to the following result:

Theorem 1. [3] The following reachability problem is efficiently computable:

Input: a finite CTMC, a target state, accuracy 0 < ε < 1, and deadline d ∈ R�0

Output: an ε-approximation of the probability to reach the target in d time.

www.manaraa.com

4 J.-P. Katoen

This result suggests to use an off-the-shelf probabilistic model checker for CTMCs
such as prism [14] or mrmc [12]. Due to the large difference between the rates
in the CTMC —the rates between states within one column is about a factor
1,000 times larger than the rates between columns— many iterations are needed
to obtain results for a reasonable ε, say 10−4 or 10−6. Verifying a configuration
with 200 substrates and 20 enzymes yielding a CTMC of about 40,000 states,
e.g., takes many hours. In order to deal with this problem, we apply aggressive
abstraction techniques that are based on partitioning the state space. This man-
ual step is guided by the following rule of thumb: group states that are quickly
connected, i.e., group the states in a column-wise manner. This yields a chain
structure as indicated in Fig. 2. Now the next step of the abstraction is to take

Fig. 2. Abstract CTMC for enzyme-catalytic substrate conversion for 2 enzyme and
4 substrate species after a state partitioning. The transition labels are probability
intervals. Rates are omitted, as the residence times of all states has been normalised
prior to abstraction, cf. [12].

several transitions into account. For instance, the lower bound probability of
moving from the leftmost abstract state to the one-but-leftmost state is 0, as
the state 2400 cannot move to any state of the form (xE , xS , xC , 1) in one step,
i.e., by taking a single transition. This yields rather course lower bounds. To
overcome this deficiency, we consider several steps. That is to say, in addition
to the state partitioning, we consider an abstraction of sequences of transitions.
The resulting structure is sketched in Fig. 3 where the most important change
is the amendment of the lower bounds in the probability intervals, and the ad-
dition of transitions. The length k of the sequences that are abstracted from is a

Fig. 3. Abstract CTMC for enzyme-catalytic substrate conversion for 2 enzyme and
4 substrate species after a state and transition sequence abstraction. The transition
labels are probability intervals. State residence times now are Erlang distributions.

parameter of the abstraction procedure. The state residence times now become
sequences of (equal) exponential distributions, i.e., they become Erlang distri-
butions of length k. As a result of the intervals on the transition probabilities,

www.manaraa.com

Model Checking: One Can Do Much More Than You Think! 5

the analysis of the abstract CTMC yields lower and upper bounds of the real
probability. On increasing the parameter k, the difference between these bounds
becomes smaller. This effect is illustrated in Fig. 4(a). Our method is accurate

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

t

P
ro

ba
bi

lit
y

k=1, min
k=1, max
k=3, min
k=3, max
k=10, min
k=10, max

(a) The influence of k on the accuracy
of bounds.

10.000 12.000 14.000 16.000 18.000 20.000

0,2

0,4

0,6

0,8

1

time bound

P
ro

ba
bi

lit
y

(b
ou

nd
s)

k=1024, min
k=1024, max
k=1024, diff
k=2048, min
k=2048, max
k=2048, diff
k=4096, min
k=4096, max
k=4096, diff
concrete model

(b) Time-bounded reachability bounds for
enzyme-catalysed substrate conversion.

if the obtained intervals are small, e.g., for xS = 200, k = 212, and time-bound
t = 14, 000, the relative interval width between the lower and upper bounds is
about 10%. The column-wise abstraction results in a state space reduction by a
factor 20 and reduces the run-times with several orders of magnitude. For further
details on this case study we refer to [11]. The results have been obtained using
the mrmc model checker [12].

To conclude, model checking combined with novel aggressive abstraction tech-
niques yield a powerful technique to check interesting properties of biological
systems. The technique is highly competitive with existing techniques such as
solving chemical master equations and Monte Carlo simulation. Recent experi-
ments indicate that these techniques are also very helpful for a completely differ-
ent application area—queueing theory. By means of abstraction we were able to
analyse timed reachability properties for so-called tree-based quasi-birth-death
processes with state spaces of up to 10278 states by abstractions of about 1.2
million states with an accuracy of ε = 10−6, see [13]. To our knowledge, this
was the first time ever that tree-shaped Markov models of this size have been
analysed numerically.

3 Optimal Battery Scheduling

As argued in the introduction, an important feature of model checking is the
possibility to generate counterexamples in case a property is refuted. For in-
stance, for the property �(x > 2), expressing that along a path any state should
satisfy x > 2 for integer variable x, a counterexample is a finite path reaching
a state for which x � 2. Counterexamples can be used for scheduling problems
in the following way. Suppose that we are interested in finding a schedule that
steers a system from a starting to a target state, G, say. Then we model the
possible non-deterministic moves of the system by means of a finite transition

www.manaraa.com

6 J.-P. Katoen

system, and check whether the property ¬�G, or equivalently, �¬G, holds. If
there exists a schedule leading to G, the model checker will refute the property
�¬G and yields a finite schedule as counterexample. A similar strategy can be
applied to real-time systems extended with costs where schedules are sought that
minimize the total costs. This will be briefly illustrated in the following example
where we will use costs to model energy consumption.

It is well-known that the battery lifetime determines system uptime and heav-
ily depends on the battery capacity, the level of discharge current, and the usage
profile. We consider the following problem: given a number of batteries and a
usage profile, what is the optimal policy to empty the batteries such that the
multiple-battery system’s lifetime is maximized. It is certainly far from optimal
to solve this off-line scheduling problem by emptying the batteries in a sequential
fashion due to the recovery effect: during idle periods, the battery regains some
of its capacity, cf. Fig. 4(d). There is an electro-chemical explanation for this re-
covery effect. Ions have to diffuse from the anode to the cathode of the battery.
At high currents, the internal diffusion is too slow and the reaction sites at the
cathode surface get blocked. During idle periods, ions get time to diffuse again
and accordingly the battery’s capacity increases. Alternative scheduling strate-
gies that can exploit this recovery during idle periods are round-robin (empty
the batteries according to fixed total order), or best-of-N strategies (use the
mostly charged battery among the available N ones). We will show that opti-
mal scheduling policies can be obtained using model checking of priced timed
automata.

(c) The rate-capacity effect: the bat-
tery capacity (y-axis) drops for high
discharge currents (x-axis). A dis-
charge rate of 0.5 C means that the
total discharge takes 2 hours.

(d) The recovery effect: battery
regains capacity during idle pe-
riods. This yields the saw-tooth
curve.

A second non-linear effect of batteries that has to be taken into account is
the so-called rate-capacity effect, see Fig. 4(c). One would think that the ideal
capacity would be constant for all discharge currents, and all energy stored in the
battery would be used. However, in reality for a real battery the voltage slowly
drops during discharge and the effective capacity is lower for high discharge

www.manaraa.com

Model Checking: One Can Do Much More Than You Think! 7

currents. The discharge rate in Fig. 4(c) is given in terms of C rating, a C rating
of 2C means that the battery is discharged in 1/2 hour. The measured capacities
are given relatively to the capacity at the 2 hour discharge rate, 0.5 C.

The battery model we use is based on the kinetic battery model for lead-acid
batteries as developed by Manwell & McGowan [15]. In this model, the charge
of the battery is distributed over two wells, the available charge with height h1
and the bound charge with height h2, see Fig. 4. The available charge represents
the charge that is currently available for usage. Discharging leads to a decrease
of h1. The battery is empty if and only if h1 = 0. When the battery is idle,
i.e., not being discharged, charge flows from the bound charge to the available
charge. The speed depends on the height difference h2−h1 and the resistance k
between the two wells. This models the recovery effect. The rate capacity effect is
captured by the fact that at higher discharge levels, there is less time to recover.
Let y1 be the volume of the available charge well and y2 the volume of the

Fig. 4. The kinetic battery model with a boundary and available charge well of height
h1(t) and h2(t) at time t, respectively. The discharge i(t) at time point t is depicted
on the right and will lead to a decrease of the available charge. Recovery is modelled
by a charge flow between the boundary and available well when i(t) = 0.

boundary charge well. The behaviour of the kinetic battery model is captured
by the following set of linear differential equations:

h1(t) =
y1(t)
c ẏ1(t) = −i(t) + k·(h2(t)− h1(t))

h2(t) =
y2(t)
1−c ẏ2(t) = −k·(h2(t)− h1(t))

with initial conditions y1(0) = c·C and y2(0) = (1 − c)·C where C is the total
capacity and 0 < c < 1 for constant c. The constant c indicates the fraction of
capacity that is initially present in the available charge well. Here, i(t) represents
the discharge process.

The kinetic battery model can naturally be described by a network of priced
timed automata. Intuitively speaking, clocks in timed automata are used to model
the advancement of time t, whereas cost variables are used to model the battery

www.manaraa.com

8 J.-P. Katoen

charge (in fact, the reverse). A timed automaton is in fact a finite-state automa-
ton equipped with real-valued clocks that can be used as timers to measure the
elapse of time. Constraints on these clocks can be used to guard state-transitions,
and clocks can be set to zero while taking a transition. In priced timed automata,
states are equipped with a cost rate r such that the accumulated cost in that
state over a time period d grows with r·d.

Fig. 5. Example priced timed automaton of a lamp. The cost rate is 0 in state off, 10
in state low and 20 in state bright. Cost represents energy consumption.

We now model the battery scheduling problem as:

(DC1 ||RC1)︸ ︷︷ ︸
battery 1

|| || (DCn ||RCn)︸ ︷︷ ︸
battery n

||Load || Scheduler

where DCi describes the discharging process of the battery i, RCi the recovery
effect during idle periods of battery i, Load the usage profile and Scheduler an
automaton that non-deterministically selects one of the batteries for discharging
once the usage profile demands a discharge. Then we exploit the following result:

Theorem 2. [4,1] The following reachability problem is effectively computable:

Input: a priced timed automaton, an initial state, and a target state
Output: the minimum cost of runs from the initial state to the target.

The complexity of the reachability problem is however exponential. As a by-
product of the computation of the minimal cost run, an optimal schedule is
obtained that achieves this minimal-cost run.

Our objective is to minimize the bound charge levels (of all batteries) once all
batteries are empty, i.e., once all available charges are empty. Table 1 presents
the results for two batteries for several usage profiles (the rows) and several
battery scheduling disciplines (columns). The last column presents the battery
lifetimes obtained by model checking our priced timed automaton. These results
have been obtained using the uppaal cora model checker1. The recovery effect
becomes clearly apparent when comparing, e.g., the rows for the usage profiles

1 www.uppaal.com

www.uppaal.com

www.manaraa.com

Model Checking: One Can Do Much More Than You Think! 9

Table 1. Lifetimes of a multi-battery system under various usage profiles (first column)
and various scheduling disciplines (second to fourth column). The optimal lifetimes
obtained by model checking are listed in the last column.

test sequential round robin best-of-two optimal
load lifetime lifetime lifetime lifetime

(min) (min) (min) (min)

CL 250 9.12 11.60 11.60 12.04
CL 500 4.10 4.53 4.53 4.58
CL alt 5.48 6.10 6.12 6.48
ILs 250 22.80 38.96 38.96 40.80
IL� 250 45.84 76.00 76.00 78.96
ILs 500 8.60 10.48 10.48 10.48
IL� 500 12.94 15.96 15.96 18.68
ILs alt 12.38 12.82 16.30 16.91
ILs r1 12.80 16.26 16.26 20.52

ILs 250 and IL� 250. Both profiles have a peak charge of 250 Amin2 the and
peak with equal duration, but the idle time between successive discharging pe-
riods is small and long, respectively. This almost doubles the battery lifetime.
A similar phenomenon appears for profiles ILs 500 and IL� 500. The optimal
battery lifetimes obtained by model checking (last column) clearly outperform
round-robin and best-of-two scheduling. Note that best-of-two is not much better
than round-robin, and requires the ability to measure the remaining capacity of
the batteries. Sequential scheduling is far from attractive. An example schedule
that is obtained by model checking (lower part), and compared to a best-of-two
schedule (middle part) for a given usage profile (uppermost block curve, in black)
is provided in Fig. 6.

To conclude, model checking allows for computing the optimal battery sche-
duling policy. Alternative techniques to obtain such policies are by solving non-
linear optimisation problems. It is fair to say, that the obtained optimal schedules
using this technique are not easily implementable in realistic battery-powered
systems such as PDAs or sensor nodes. By means of model checking, one can
however determine the quality of a given scheduling policy by comparing it to
the optimal one. The above experiments show that round-robin scheduling is
mostly behaving quite good. For further details on this case study, see [9,10].

4 Stochastic Scheduling

The third application example is slightly more theoretical, and aims to illustrate
how state-of-the-art stochastic model checking techniques can be used to solve
stochastic scheduling problems. Stochastic scheduling is important in the field of
optimization [19], and is motivated by problems of priority assignment in various

2 Amin stands for ampere minute and is the equivalent of one ampere for one minute.

www.manaraa.com

10 J.-P. Katoen

Fig. 6. Example of obtained optimal schedule for two batteries (lowermost curve) for
a given usage profile (uppermost curve), compared to a best-of-two scheduling policy
(middle curve).

systems where jobs with random features, such as random durations, or arrival
processes, are considered, or in which machines are present that are subject to
random failures.

More concretely, we consider the scheduling of N jobs on K identical ma-
chines, where K << N . Every job has a random duration such that job i has a
mean duration of di > 0 time units. The most appropriate stochastic approxi-
mation is to model the duration of job i by a negative exponential distribution
with rate λi =

1
di
. (Technically speaking, given that only the mean of a random

event is known, the probability distribution that maximizes the entropy is an
exponential one with exactly this mean; intuitively, maximizing entropy mini-
mizes the amount of prior information built into the probability distribution.)
Jobs are scheduled on the machines such that job scheduling is pre-emptive. The
pre-emptive scheduling allows us to assign each machine one of the n remaining

jobs giving rise to
(

n
K

)
possible choices. This means that on finishing of a job

on machine j, every job on any other machine can be pre-empted. This scheme
is illustrated by a decision tree for 4 jobs and 2 machines in Fig. 7. Every node in
the tree is labelled with the set of remaining, i.e., unfinished jobs. The underlined
job numbers are those that are selected for execution; if one of the jobs, i say,
finishes in a situation where n jobs have not been processed yet, an event that
happens with probability λi

λi+λj
(where j is the number of the other selected,

but unfinished job), n−1 jobs remain, and a new selection is made. The time
that has elapsed is determined by the rate λi. Due to the memoryless property
of the exponential distribution, the remaining execution time of the pre-empted
job j remains exponentially distributed with rate λj .

www.manaraa.com

Model Checking: One Can Do Much More Than You Think! 11

Fig. 7. Two possible schedules of 4 jobs on 2 machines with pre-emptive scheduling
policy. In the left one, jobs 2 and 3 are selected first; in the right one, jobs 1 and 4 are
initially picked.

It is well-known that the LEPT policy —the longest expected processing
time-first policy— yields the minimal expected finishing time of the last job
(also called the expected makespan), cf. [5]. As [5] however argues, “it is hard to
calculate these expected values”. We will show how probabilistic model checking
can be applied to address a harder question, namely: which policy maximizes
the probability to finish all jobs on time? (The alerted reader might argue that
this question is somehow related to the biology case study, and indeed it is. The
difference is that the biology example is fully deterministic, that is, in fact an
instance of the above case in which there is only a single possible choice in every
node of the decision tree.)

This stochastic job scheduling problem naturally gives rise to a continuous-
time Markov decision process (CTMDP, for short)3. This model is a generalisa-
tion of CTMCs, the model used in the first case study, with non-determinism.
In every state, an action (ranged over by α) is selected non-deterministically, see
Fig. 8. In our setting, an action corresponds to a scheduling decision of which
jobs to process next. The residence time in a state is exponentially distributed.
The problem of determining the policy that maximizes the probability to finish
all jobs within d time units now reduces to the following question: what is the
maximal probability to reach the sink state within d time units? This can be
solved by means of model checking using the following result.

Theorem 3. [18] The following reachability problem is effectively computable:

Input: a finite CTMDP, a target state, accuracy 0 < ε < 1, and deadline d ∈ R�0

Output: an ε-approximation of the maximal (or dually, minimal) probability to
reach the target in d time.

Importantly though is that as a by-product of determining this ε-approximation,
one obtains an ε-optimal policy that yields this maximal probability (up to an
accuracy of ε). The main complication of this timed reachability problem is that
the optimal policies are time-dependent. This is an important difference with

3 In fact, a locally uniform continuous-time Markov decision process [17].

www.manaraa.com

12 J.-P. Katoen

Fig. 8. Possible schedules for 4 jobs on 2 machines, modelled as a continuous-time
Markov decision process

reachability questions for discrete-time Markov decision processes (MDPs) for
which time-independent policies suffice, e.g., policies that in any state always
take the same decision. The decisions of time-dependent policies may vary over
time and may for instance depend on the remaining time until the deadline d.
Their computation is done via a discretisation yielding an MDP on which a
corresponding step-bounded reachability problem is solved using value iteration.
The smallest number of steps needed in the discretised MDP to guarantee an

accuracy of ε is λ2·d2

2ε , where λ is the largest rate of a state residence time in the
CTMDP at hand. In a similar way, minimal timed reachability probabilities can
be obtained as well as their corresponding policies.

Fig. 9. Minimal and maximal reachability probabilities for finishing 4 jobs on 2 ma-
chines under a pre-emptive scheduling strategy

The results of applying this discretization on the example with 4 jobs and
two machines is shown in Fig. 9 where the deadline d is given on the x-axis and
the reachability probability on the y-axis. For equally distributed job durations,

www.manaraa.com

Model Checking: One Can Do Much More Than You Think! 13

i.e., λi = λj for all i, j, the maximal and minimal probabilities coincide. Oth-
erwise, the probabilities depend on the scheduling policy. It turns out that the
ε-optimal scheduler that maximizes the reachability probabilities adheres to the
SEPT (shortest expected processing time first) strategy; moreover, the optimal
ε-scheduler for the minimum probabilities obeys the LEPT strategy. These re-
sults have been obtained by a vanilla version of the model checker mrmc [12].
The case study is described in more detail in [16].

5 Concluding Remarks

By means of three examples from different application fields, we have attempted
to argue that model checking is applicable to problems of a quite different nature
than what is typically considered as verification problems. All problems have a
quantitative flavor, i.e., non-functional aspects such as timing, randomness, and
costs (energy) are essential to adequately model the applications at hand. We
believe that there is an increased need for quantitative model checking as the
importance of non-functional aspects is growing at staggering rate. We stress
that in the last two examples we used model checking to synthesize an optimal
schedule.

The battery example can certainly also be handled with existing techniques
such as mixed integer linear programming. Dynamic programming techniques
using Bellman equations can be used to tackle the stochastic planning example.
The systems biology example can be handled using the chemical master equa-
tion or by Gillespie’s simulation algorithm. Truly so. Our take-home message is
not that model checking is the best and most efficient technique to tackle the
described problems here; it is a valuable and interesting alternative that in some
cases might be well competitive with existing traditional solution techniques.
Model checking is on its way to become ubiquitous!

Acknowledgement. I thank all co-workers on the discussed case studies:
Henrik Bohnenkamp, Boudewijn Haverkort, Marijn Jongerden, Daniel Klink,
Alexandru Mereacre, Martin Neuhäusser, Martin Leucker, Verena Wolf, and
Lijun Zhang. Part of this work has been established in the context of the EU
FP7 QUASIMODO project, the NWO-DFG bilateral ROCKS project and the
DFG Research Training Group ALGOSYN.

References

1. Alur, R., Torre, S.L., Pappas, G.J.: Optimal paths in weighted timed automata.
Theor. Comput. Sci. 318(3), 297–322 (2004)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
3. Baier, C., Katoen, J.-P., Hermanns, H.: Approximate Symbolic Model Checking of

Continuous-TimeMarkovChains (ExtendedAbstract). In:Baeten, J.C.M.,Mauw,S.
(eds.) CONCUR 1999. LNCS, vol. 1664, pp. 146–161. Springer, Heidelberg (1999)

www.manaraa.com

14 J.-P. Katoen

4. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J.,
Vaandrager, F.W.: Minimum-Cost Reachability for Priced Timed Automata. In:
Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 147–161. Springer, Heidelberg (2001)

5. Bruno, J.L., Downey, P.J., Frederickson, G.N.: Sequencing tasks with exponential
service times to minimize the expected flow time or makespan. J. ACM 28(1),
100–113 (1981)

6. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
7. Clarke, E.M., Schlingloff, H.: Model checking. In: Robinson, A., Voronkov, A. (eds.)

Handbook of Automated Reasoning, vol. II, ch.24, pp. 1635–1790 (2000)
8. Grumberg, O., Veith, H. (eds.): 25 Years of Model Checking. LNCS, vol. 5000.

Springer, Heidelberg (2008)
9. Jongerden, M.R., Haverkort, B.R., Bohnenkamp, H.C., Katoen, J.-P.: Maximizing

System Lifetime by Battery Scheduling. In: 39th IEEE/IFIP Conf. on Dependable
Systems and Networks (DSN), pp. 63–72. IEEE Computer Society (2009)

10. Jongerden, M.R., Mereacre, A., Bohnenkamp, H.C., Haverkort, B.R., Katoen, J.-P.:
Computing optimal schedules for battery usage in embedded systems. IEEE Trans.
Industrial Informatics 5(3), 276–286 (2010)

11. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Abstraction for Stochastic Systems
byErlang’sMethod of Stages. In: vanBreugel, F., Chechik,M. (eds.) CONCUR2008.
LNCS, vol. 5201, pp. 279–294. Springer, Heidelberg (2008)

12. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104
(2011)

13. Klink, D., Remke, A., Haverkort, B.R., Katoen, J.-P.: Time-bounded reachability
in tree-structured QBDs by abstraction. Perform. Eval. 68(2), 105–125 (2011)

14. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: probabilistic model checking
for performance and reliability analysis. SIGMETRICS Performance Evaluation
Review 36(4), 40–45 (2009)

15. Manwell, J., McGowan, J.: Lead acid battery storage model for hybrid energy
systems. Solar Energy 50(5), 399–405 (1993)

16. Neuhäußer, M.R.: Model Checking Nondeterministic and Randomly Timed Sys-
tems. PhD thesis, RWTH Aachen University and University of Twente (2010)

17. Neuhäußer, M.R., Stoelinga, M., Katoen, J.-P.: Delayed Nondeterminism in
Continuous-Time Markov Decision Processes. In: de Alfaro, L. (ed.) FOSSACS
2009. LNCS, vol. 5504, pp. 364–379. Springer, Heidelberg (2009)

18. Neuhäußer, M.R., Zhang, L.: Time-bounded reachability probabilities in
continuous-time Markov decision processes. In: 7th Int. Conf. on the Quantita-
tive Evaluation of Systems (QEST), pp. 209–218. IEEE Computer Society (2010)

19. Nino-Mora, J.: Stochastic scheduling. In: Encyclopedia of Optimization, vol. V,
pp. 367–372. Springer, Heidelberg (2001)

www.manaraa.com

Proposition Algebra and Short-Circuit Logic

Jan A. Bergstra and Alban Ponse

Section Theory of Computer Science,
Informatics Institute, Faculty of Science,

University of Amsterdam, The Netherlands
www.science.uva.nl/{~janb/,~alban/}

Abstract. Short-circuit evaluation denotes the semantics of proposi-
tional connectives in which the second argument is only evaluated if the
first argument does not suffice to determine the value of the expression.
In programming, short-circuit evaluation is widely used.

We review proposition algebra [2010], an algebraic approach to propo-
sitional logic with side effects that models short-circuit evaluation. Propo-
sition algebra is based on Hoare’s conditional [1985], which is a ternary
connective comparable to if-then-else. Starting from McCarthy’s notion
of sequential evaluation [1963] we discuss a number of valuation con-
gruences on propositional statements and we introduce Hoare-McCarthy
algebras as the structures that model these congruences. We also briefly
discuss the associated short-circuit logics, i.e., the logics that define these
congruences if one restricts to sequential binary connectives.

Keywords: Conditional composition, reactive valuation, sequential
connective, short-circuit evaluation, side effect.

1 Introduction

Short-circuit evaluation is a folk term1 that describes how the common propo-
sitional connectives are evaluated in a setting of programming languages: eval-
uation stops as soon as the value T (true) or F (false) of the expression is
determined. In particular, the “conjunction” of x and y in a notation commonly
used to prescribe short-circuit evaluation, is often explained by the identity

x && y = if x then y else F ,

and the connective or in short-circuit interpretation, notation || , is then ex-
plained by the identity

x || y = if x then T else y.

So, evaluation of x && y stops if x yields F and then y is not evaluated, and
similarly, evaluation of x || y stops if x yields T and then y is not evaluated.
In the most general case, both && and || are not commutative.

1 Other names used for short-circuit evaluation are Minimal evaluation and McCarthy
evaluation.

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 15–31, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.science.uva.nl/{~janb/,~alban/}

www.manaraa.com

16 J.A. Bergstra and A. Ponse

Following this lay-out, the evaluation of a “conditional expression” is con-
sidered a natural candidate for short-circuit evaluation, and hence justifies our
choice for Hoare’s ternary connective

x � y � z,

i.e., the conditional connective that represents if y then x else z, as a basic
connective. Hoare’s conditional connective is introduced in 1985 in the paper [9]
(accounts of a similar ternary connective can be found in [7, 8]). So,

x && y = y � x � F and x || y = T � x � y. (1)

The conditional connective satisfies the three equational laws

x � T � y = x, x � F � y = y and T � x � F = x. (2)

Interestingly, in the most general case the conditional connective cannot be de-
fined in terms of the common binary connectives, where by “most general” we
refer to a semantics in which all possible “side effects” can occur, and thus a
semantics that identifies least. As an example, in many imperative-based pro-
gramming languages, assignments such as x=x+1 when interpreted as atoms (i.e.,
atomic propositions) yield upon evaluation the interpretation of the assigned
value next to having the intended side effect. It is trivial to find a propositional
statement P such that P �= P � (x=x+1)�F , or equivalently, P �= (x=x+1) && P ,
e.g.,

(x==2) �= (x==2) � (x=x+1) � F

if the initial value of x is either 1 or 2, == is interpreted as an equality test, and
the interpretation of values different from zero is T . However, the three laws for
the conditional (2) are valid in this most general case.

In case side effects do not occur, the conditional can be defined:2 using the
common notation for connectives, a definition is

y � x � z = (x ∧ y) ∨ (¬x ∧ z),

which is easily seen by substituting T respectively F for x. An example in a
setting with side effects that refutes this translation is

(y==2) � ((x=x+1) ∧ (x==2)) � (y=y+1).

This follows easily: if both x and y have initial value 1, the interpretation of this
conditional expression yields F with the side effect that x has final value 2, while
the above-mentioned translation yields T with the side effect that the final value
of x is 3 and the final value of y is 2 (note that this argument holds irrespective
of the question whether ∧ is interpreted as a short-circuit operator).

2 This is the semantical setting in Hoare’s paper [9], where the conditional was intro-
duced to provide an equational basis for propositional logic.

www.manaraa.com

Proposition Algebra and Short-Circuit Logic 17

A way to settle whether side effects have impact, and if so, to what extent, is
to distinguish various types of valuation semantics. Typically, and illustrated by
the above examples, a valuation may return different values for the same atom
during the sequential evaluation of a propositional statement (a closed term),
and valuation semantics is about such reactive valuations. We adopt the condi-
tional connective as a primitive connective and both T and F as constants. A
proposition algebra is a model of the three axioms mentioned in (2) and an axiom
for decomposing a compound central condition c in x � c � z. By adding more
axioms, more propositional statements are identified, and all proposition alge-
bras we consider are defined by concise equational axiomatizations. Given some
proposition algebra, a valuation semantics can be defined that is constructed
from so-called valuation functions, that is, functions defined on sequences of
atoms that return either T or F . Propositional statements are identified if they
yield in each context for each valuation function the same result. This context
requirement refers to the fact that upon the evaluation of an atom that yields
a side effect, the valuation value of future atoms in the propositional statement
under evaluation is possibly flipped, as is clear from the previous examples.

Concerning conjunction and disjunction, we will consider sequential versions
of these connectives that by their notation prescribe short-circuit evaluation and
that are defined with the conditional (cf. the equations in (1)). Also, negation
can be easily defined in terms of the conditional:

¬x = F � x � T.

Given some axiomatization of a proposition algebra, a short-circuit logic is a logic
that implies all consequences that can be expressed using only binary sequential
conjunction, negation and the constant T . Typical examples are the associativity
of sequential conjunction and the double negation shift ¬¬x = x.

In this paper we present a survey of our work based on proposition alge-
bra [4]. In the next section we briefly discuss so-called Hoare-McCarthy algebras
(HMAs). HMAs were introduced in [6] in order to provide a more elegant and
generic framework for the valuation semantics associated with proposition alge-
bra (we return to this point in Section 7). We construct an HMA that identifies
least and characterizes structural congruence. In Section 3 we consider the short-
circuit logic that is associated with structural congruence (short-circuit logics
were introduced in [5]). Section 4 is about contractive congruence, a congruence
that identifies more propositional statements than structural congruence. We
construct a characterizing HMA and we briefly consider the short-circuit logic
associated with contractive congruence. In Section 5 we discuss memorizing con-
gruence, a congruence that identifies more than contractive congruence and less
than propositional logic, and we argue that the associated short-circuit logic
also defines this congruence because the conditional is definable in this setting
(whereas it is not in contractive congruence, see Section 7). In Section 6 we con-
sider static congruence and its short-circuit logic; apart from the notation, this
is the setting of conventional propositional logic and no side effects are possible.
In Section 7 we end the paper with a brief summary and discussion about our
work described in [4–6].

www.manaraa.com

18 J.A. Bergstra and A. Ponse

Table 1. The set CP of axioms for proposition algebra

x � T � y = x (CP1)

x � F � y = y (CP2)

T � x � F = x (CP3)

x � (y � z � u) � v = (x � y � v) � z � (x � u � v) (CP4)

2 Proposition Algebras and HMAs

In this section we define proposition algebras, and in order to capture their
valuation semantics we briefly discuss Hoare-McCarthy algebras, a certain type
of two-sorted algebras that we introduced in [6].

Throughout this paper let A be a non-empty, denumerable set of atoms
(atomic propositions) with typical elements a, b, Define C as the sort of
conditional expressions with signature

ΣA
ce = {a : C, T : C, F : C, . � . � . : C × C × C → C | a ∈ A},

thus each atom in A is a constant of sort C. In ΣA
ce, ce stands for “conditional

expressions”. We write TΣA
ce

for the set of closed terms over ΣA
ce. Given an ex-

pression t1 � t2 � t3 we will sometimes refer to t2 as the central condition. We
assume that conditional composition satisfies the axioms in Table 1 and we refer
to this set of axioms with CP (Conditional Propositions). Axiom (CP4) also
stems from [9] and defines decomposition of the central condition by distributiv-
ity. We argue in Section 3 that CP characterizes all valid identities in the case
that unrestricted side effects occur.

Definition 1. A ΣA
ce-algebra is a proposition algebra if it is a model of CP.

A non-trivial initial algebra I(ΣA
ce,CP) exists. This can be easily shown in the

setting of term rewriting [12]. It is not hard to show that directing all CP-axioms
from left to right yields a strongly normalizing TRS (term rewriting system)
for closed terms. However, the normal forms resulting from this TRS are not
particularly suitable for systematic reasoning, and we introduce another class of
closed terms for this purpose.

Definition 2. A term t ∈ TΣA
ce

is a basic form if for a ∈ A,

t ::= T | F | t � a � t.

Lemma 1. For each closed term t ∈ TΣA
ce

there exists a unique basic form t′

with CP � t = t′.

Proof. Let t′′ be the unique normal form of t. Replace in t′′ each subterm that
is a single atom a and occurs as an outer argument by T � a � F . This results in
a unique basic form t′ and clearly CP � t = t′. �	

www.manaraa.com

Proposition Algebra and Short-Circuit Logic 19

Let S be a sort of states with constant c. We extend the signature ΣA
ce to

ΣA
sce = Σ

A
ce ∪ {c : S, . � . � . : S × C × S → S},

where sce stands for “states and conditional expressions”.

Definition 3. A ΣA
sce-algebra is a two-sorted proposition algebra if its ΣA

ce-
reduct is a proposition algebra, and if it satisfies the following axioms where x
ranges over conditional expressions and s, s′ range over states:

s � T � s′ = s, (TS1)

s � F � s′ = s′, (TS2)

x �= T ∧ x �= F → s � x � s′ = c. (TS3)

So, the state set of a two-sorted proposition algebra can be seen as one that is
equipped with an if-then-else construct and conditions that stem from CP. We
extend the signature ΣA

sce to

ΣA
spa = ΣA

sce ∪ { ! : C × S → S, • : C × S → C},

where spa stands for “stateful proposition algebra” (see below). The operator
! is called “reply” and the operator • is called “apply” and we further assume
that these operators bind stronger than conditional composition. The reply and
apply operator are taken from [3].

Definition 4. A ΣA
spa-algebra is a stateful proposition algebra, SPA for

short, if its reduct to ΣA
sce is a two-sorted proposition algebra, and if it satis-

fies the following axioms where x, y, z range over conditional expressions and s
ranges over states:

T ! s = T, (SPA1)

F ! s = F, (SPA2)

(x � y � z) ! s = x ! (y • s) � y ! s � z ! (y • s), (SPA3)

T • s = s, (SPA4)

F • s = s, (SPA5)

(x � y � z) • s = x • (y • s) � y ! s � z • (y • s), (SPA6)

x ! s = T ∨ x ! s = F, (SPA7)

∀s(x ! s = y ! s ∧ x • s = y • s)→ x = y. (SPA8)

We refer to (SPA7) as two-valuedness and we write CTS (abbreviating CP
and TS and SPA) for the set that exactly contains all fifteen axioms involved.

In a stateful proposition algebra S with domain C′ of conditional expressions
and domain S′ of states, a propositional statement t ∈ TΣA

ce
can be associated

with a ‘valuation function’ t ! : S′ → {T, F} (the evaluation of t according to
some initial valuation function or ‘state’) and a ‘state transformer’ t• : S′ → S′.

www.manaraa.com

20 J.A. Bergstra and A. Ponse

Definition 5. A Hoare-McCarthy algebra, HMA for short, is the ΣA
ce-reduct

of a stateful proposition algebra.

For each HMA A we have by definition A |= CP. In Theorem 1 below we prove the
existence of an HMA that characterizes CP in the sense that a closed equation
is valid only if it is derivable from CP.

We define structural congruence, notation =sc, on TΣA
ce

as the congruence
generated by CP.

Theorem 1. An HMA that characterizes CP exists: there is an HMA Asc such
that for all t, t′ ∈ TΣA

ce
, CP � t = t′ ⇐⇒ Asc |= t = t′.

Proof. We construct the ΣA
spa-algebra Ssc with C′ = TΣA

ce
/=sc as its set of con-

ditional expressions and, writing A+ for the set of finite, non-empty strings over
the set A of atoms, the function space

S′ = {T, F}A+

as its set of states. For each state f and atom a ∈ A define a !f = f(a) and a • f
as the function defined for σ ∈ A+ by

(a • f)(σ) = f(aσ).

The state constant c is given an arbitrary interpretation, and the axioms (TS1)–
(TS3) define . � . � . : S′ × C′ × S′ in S

sc. The axioms (SPA1)–(SPA6) fully
determine the functions ! and •, and this is well-defined: if t =sc t

′ then for all
f , t ! f = t′ ! f and t • f = t′ • f (this follows by inspection of the CP axioms).
The axiom (SPA7) holds by construction of S′. In order to prove that Ssc is a
SPA it remains to be shown that axiom (SPA8) holds, i.e., for all t, t′ ∈ TΣA

ce
,

∀f(t ! f = t′ ! f ∧ t • f = t′ • f)→ t =sc t
′.

This follows by contraposition. By Lemma 1 we may assume that t and t′ are
basic forms, and we apply induction on the complexity of t, where we use ≡ to
denote syntactic equivalence:

1. Suppose t ≡ T , then t′ ≡ F yields t !f �= t′ ! f for any f , and if t′ ≡ t1 � a � t2
then consider f with f(a) = T and f(aσ) = F for σ ∈ A+. We find t • f = f
and t′ • f �= f because (t′ • f)(a) = (t1 • f)(aσ) = F .

2. If t ≡ F a similar argument applies.
3. Suppose t ≡ t1 �a� t2, then the cases t′ ∈ {T, F} can be dealt with as above.

If t′ ≡ t3 � a � t4 then assume t1 � a � t2 �=sc t3 � a � t4 because t1 �=sc t3. By
induction there exists f with t1 • f �= t3 • f or t1 ! f �= t3 ! f . Take some g
such that a•g = f and a !g = T , then g distinguishes t1 �a�t2 and t3 �a�t4.
If t1 =sc t3, then a similar argument applies for t2 �=sc t4.
If t′ ≡ t3 � b � t4 with a and b different, then (t1 � a � t2) • f �= (t3 � b � t4) • f
for f defined by f(a) = f(aσ) = T and f(b) = f(bσ) = F because
((t1 �a�t2)•f)(a) = (t1 • (a•f))(a) = f(aρa) = T , and ((t3 �b�t4)•f)(a) =
(t4 • (b • f))(a) = f(bρ′a) = F (where ρ, ρ′ possibly equal the empty string).

www.manaraa.com

Proposition Algebra and Short-Circuit Logic 21

So Ssc is a SPA. Define the HMA Asc as the ΣA
ce-reduct of S

sc. The validity of
axiom (SPA8) proves ⇐= as stated in the theorem (the implication =⇒ holds
by definition of a SPA). �	

Observe that Asc ∼= I(ΣA
ce,CP) and that by the proof of the above theorem we

find for all t, t′ ∈ TΣA
ce
,

CP � t = t′ ⇐⇒ S
sc |= t = t′.

In [10] it is shown that the axioms of CP are independent, and also that they
are ω-complete if the set of atoms involved contains at least two elements.

3 Free Short-Circuit Logic: FSCL

In this section we recall our generic definition of a short-circuit logic introduced
in [5] and discuss free short-circuit logic (FSCL), the least identifying short-
circuit logic we consider and that is associated with CP.

We first return to our discussion of short-circuit evaluation started in the
Introduction. Our interest can be captured by the following question: Given
some programming language, what is the logic that implies the equivalence of
conditions, notably in if-then-else and while-do constructs and the like? In [5] we
study sequential variants of propositional logic that are based on left-sequential
conjunction, i.e., conjunction that prescribes short-circuit evaluation and that is
defined by

x ∧�� y = y � x � F
where the fresh symbol ∧�� is taken from [1] (the small circle indicates that the
left argument must be evaluated first). It is not hard to find examples that show
that the laws x ∧�� x and its weaker version a ∧�� a = a are not valid in the most
general case (cf. the examples discussed in the Introduction), which is the case
characterized by CP. We define a set of equations that is sound in FSCL and
raise the question of its completeness.

We define short-circuit logics such as FSCL in a generic way. Intuitively, a
short-circuit logic is a logic that implies all consequences of CP that can be ex-
pressed in the signature {T,¬, ∧�� }. The definition below uses the export-operator
� of module algebra [2] to define this in a precise manner, where it is assumed
that CP satisfies the format of a module specification. In module algebra, Σ �X
is the operation that exports the signature Σ from module X while declaring
other signature elements hidden. In this case it declares conditional composition
to be an auxiliary operator.

Definition 6. A short-circuit logic is a logic that implies the consequences
of the module expression

SCL = {T,¬, ∧�� } � (CP + 〈 ¬x = F � x � T 〉+ 〈x ∧�� y = y � x � F 〉).

For example, SCL � ¬¬x = x can be easily shown. Following Definition 6, the
most basic (least identifying) short-circuit logic we distinguish is this one:

www.manaraa.com

22 J.A. Bergstra and A. Ponse

Table 2. EqFSCL, a set of equations for FSCL

F = ¬T (SCL1)

x ∨�� y = ¬(¬x ∧�� ¬y) (SCL2)

¬¬x = x (SCL3)

T ∧�� x = x (SCL4)

x ∧�� T = x (SCL5)

F ∧�� x = F (SCL6)

(x ∧�� y) ∧�� z = x ∧�� (y ∧�� z) (SCL7)

(x ∨�� y) ∧�� (z ∧�� F) = (¬x ∨�� (z ∧�� F)) ∧�� (y ∧�� (z ∧�� F)) (SCL8)

(x ∨�� y) ∧�� (z ∨�� T) = (x ∧�� (z ∨�� T)) ∨�� (y ∧�� (z ∨�� T)) (SCL9)

((x ∧�� F) ∨�� y) ∧�� z = (x ∧�� F) ∨�� (y ∧�� z) (SCL10)

Definition 7. FSCL (free short-circuit logic) is the short-circuit logic that
implies no other consequences than those of the module expression SCL.

Although the constant F does not occur in the exported signature of SCL, we
discuss FSCL using this constant to enhance readability. This is not problematic
because

CP + 〈 ¬x = F � x � T 〉 � F = ¬T,

so F can be used as a shorthand for ¬T in FSCL.
In Table 2 we provide equations for FSCL and we use the name EqFSCL

for this set of equations. Some comments: equation (SCL1) defines the constant
F , and equation (SCL2) defines ∨�� , so-called left-sequential disjunction. Equa-
tions (SCL3) − (SCL7) need no comment. Equation (SCL8) defines a property
of the mix of negation and the sequential connectives, and its soundness can
perhaps be easily grasped by considering the evaluation values of x (observe
that z ∧�� F = (z ∧�� F) ∧�� ...). Equation (SCL9) defines a restricted form of right-
distributivity of ∧�� , and so does equation (SCL10) (because (x ∧�� F) ∧�� z = x ∧�� F).

We note that equations (SCL2) and (SCL3) imply sequential versions of
De Morgan’s laws, which allows us to use sequential versions of the duality
principle. Furthermore, we note that the equation x ∧�� F = F should not be
a consequence of EqFSCL: it is easily seen that Asc �|= F � a � F = F (see
Theorem 1). A simple consequence of equation (SCL8) is

x ∧�� F = ¬x ∧�� F (SCL8∗)

(take y = z = F), which we will use in Section 5, and another interesting
EqFSCL-consequence is (x ∨�� T) ∧�� y = (x ∧�� F) ∨

��

y (for a proof see [5]).

Proposition 1 (Soundness). The equations in EqFSCL (see Table 2) are
derivable in FSCL.

www.manaraa.com

Proposition Algebra and Short-Circuit Logic 23

While not having found any equations that are derivable in FSCL but not from
EqFSCL, we failed to prove completeness of EqFSCL in the following sense (of
course, =⇒ follows from Proposition 1):

For all SCL-terms t and t′, EqFSCL � t = t′ ⇐⇒ FSCL � t = t′. (3)

4 Contractive Congruence

In this section we consider the congruence defined by the axioms of CP and these
axiom schemes (a ∈ A):

(x � a � y) � a � z = x � a � z, (CPcr1)

x � a � (y � a � z) = x � a � z. (CPcr2)

Following [4], we write CPcr for this set of axioms. Typically, successive equal
atoms are contracted according to the axiom schemes (CPcr1) and (CPcr2).

Let contractive congruence, notation =cr, be the congruence on TΣA
ce
generated

by the axioms of CPcr.

Definition 8. A term t ∈ TΣA
ce

is a cr-basic form if for a ∈ A,

t ::= T | F | t1 � a � t2

and ti (i = 1, 2) is a cr-basic form with the restriction that the central condition
(if present) is different from a.

Lemma 2. For each t ∈ TΣA
ce

there exists a cr-basic form t′ with CPcr � t = t′.

Proof. By structural induction; see [4] for a full proof. �	

Theorem 2. For |A| > 1, an HMA that characterizes CPcr exists, i.e. there is
an HMA A

cr such that for all t, t′ ∈ TΣA
ce
, CPcr � t = t′ ⇐⇒ A

cr |= t = t′.

Proof. Let Acr ⊂ A+ be the set of strings that contain no consecutive occur-
rences of the same atom. Construct the ΣA

spa-algebra Scr with TΣA
ce
/=cr as its set

of conditional expressions and the function space

S′ = {T, F}Acr

as its set of states. For each state f and atom a ∈ A define a !f = f(a) and a • f
by

(a • f)(σ) =
{
f(σ) if σ = a or σ = aρ,

f(aσ) otherwise.

Clearly, a•f ∈ {T, F}Acr

if f ∈ {T, F}Acr

. Similar as in the proof of Theorem 1,
the state constant c is given an arbitrary interpretation, and the axioms (TS1)–
(TS3) define the function s � f � s′ in Scr. The axioms (SPA1)–(SPA6) fully
determine the functions ! and •, and this is well-defined: if t =cr t

′ then for all

www.manaraa.com

24 J.A. Bergstra and A. Ponse

f , t ! f = t′ ! f and t • f = t′ • f follow by inspection of the CPcr axioms. We
show soundness of the axiom scheme (CPcr1): note that a ! (a • f) = a ! f and
a • (a • f) = a • f , and derive

((t1 � a � t2) � a � t) ! f = (t1 � a � t2) ! (a • f) � a ! f � t ! (a • f)
= t1 ! (a • (a • f)) � a ! f � t ! (a • f)
= (t1 � a � t) ! f,

and

((t1 � a � t2) � a � t) • f = (t1 � a � t2) • (a • f) � a ! f � t • (a • f)
= t1 • (a • (a • f)) � a ! f � t • (a • f)
= (t1 � a � t) • f.

The soundness of (CPcr2) follows in a similar way. The axiom (SPA7) holds by
construction of S′. In order to prove that Scr is a SPA it remains to be shown that
axiom (SPA8) holds. This follows by contraposition: by Lemma 2 we may assume
that both t and t′ are cr-basic forms, and apply induction on the complexity of t
(for a detailed proof of this, see [6]). Now define the HMA Acr as the ΣA

ce-reduct
of Scr. The above argument on the soundness of the axiom schemes (CPcr1) and
(CPcr2) proves =⇒ as stated in the theorem, and the validity of axiom (SPA8)
proves ⇐=. Finally, note that Acr ∼= I(ΣA

ce,CPcr). �	
In the proof above we defined the SPA Scr and we found that if |A| > 1, then
for all t, t′ ∈ TΣA

ce
,

CPcr � t = t′ ⇐⇒ S
cr |= t = t′. (4)

If A = {a} then Acr = A and S
cr as defined above has only two states, say f

and g with f(a) = T and g(a) = F . It easily follows that

A
cr |= T � a � T = T,

so Acr �∼= I(ΣA
ce,CPcr) if A = {a}. The following corollary is related to Theorem 2

and characterizes contractive congruence in terms of a quasivariety of SPAs that
satisfy an extra condition.

Corollary 1. Let |A| > 1. Let Ccr be the class of SPAs that satisfy for all a ∈ A
and s ∈ S,

a ! (a • s) = a ! s ∧ a • (a • s) = a • s.
Then for all t, t′ ∈ TΣA

ce
, Ccr |= t = t′ ⇐⇒ CPcr � t = t′.

Proof. By its definition, Scr ∈ Ccr, which by (4) implies =⇒. For the converse,
it is sufficient to show that the axioms (CPcr1) and (CPcr2) hold in any SPA
that is in Ccr. Let such S be given. Consider (CPcr1): if for an interpretation of
s in S, a ! s = F the proof is trivial, and if a ! s = T , then a ! (a • s) = T and thus

((t1 � a � t2) � a � t) ! s = t1 ! (a • (a • s))
= t1 ! (a • s)
= (t1 � a � t) ! s,

and ((t1 � a � t2) � a � t) • s = (t1 � a � t) • s can be proved in a similar way. �	

www.manaraa.com

Proposition Algebra and Short-Circuit Logic 25

Finally, we briefly discuss a variant of short-circuit logic that is based on CPcr.
We write CPcr(A) to denote CPcr in a notation close to module algebra [2].

Definition 9. CSCL (Contractive Short-Circuit Logic) is the short-circuit
logic that implies no other consequences than those of the module expression

{T,¬, ∧�� , a | a ∈ A} � (CPcr(A) + 〈 ¬x = F � x � T 〉+ 〈x ∧�� y = y � x � F 〉).

The equations defined by CSCL include those derivable from EqFSCL, and

a ∧�� (a ∨�� x) = a,
a ∨�� (a ∧�� x) = a.

It is an open question whether the extension of EqFSCL with these two equations
yields an axiomatization of CSCL. Observe that the following equations are
consequences in CSCL:

a ∧�� a = a, a ∨�� a = a,
¬a ∧�� (¬a ∨�� x) = ¬a, ¬a ∨�� (¬a ∧�� x) = ¬a,

¬a ∧�� ¬a = ¬a, ¬a ∨�� ¬a = ¬a.

An example that illustrates the use of CSCL concerns atoms that define manip-
ulation of Boolean registers:

– Consider atoms set:i:j and eq:i:j with i ∈ {1, ..., n} (the number of reg-
isters) and j ∈ {T, F} (the value of registers).

– An atom set:i:j can have a side effect (it sets register i to value j) and
yields upon evaluation always T .

– An atom eq:i:j has no side effect but yields upon evaluation only T if
register i has value j.

Clearly, the CSCL-consequences mentioned above are valid in the setting of
this example, but x ∧�� x = x is not: assume register 1 has value F and let
t = eq:1:F ∧�� set:1:T . Then t yields T upon evaluation in this state, while
t ∧�� t yields F .

5 Memorizing Congruence

In this section we consider the congruence defined by the axioms of CP and this
axiom:

x � y � (z � u � (v � y � w)) = x � y � (z � u � w). (CPmem)

Following [4], we write CPmem for this set of axioms. Axiom (CPmem) defines
how the central condition y may recur in a propositional statement, and defines
a general form of contraction: with u = F we find

x � y � (v � y � w) = x � y � w. (5)

www.manaraa.com

26 J.A. Bergstra and A. Ponse

The symmetric variants of (CPmem) and (5) all follow easily with y � x � z =
(z � F � y) � x � (z � T � y) = z � (F � x � T) � y (which is a CP-derivation), e.g.,

(x � y � (z � u � v)) � u � w = (x � y � z) � u � w. (6)

Let memorizing congruence, notation =mem, be the congruence on TΣA
ce

gener-
ated by the axioms of CPmem. As in the preceding cases, a special type of basic
forms can be used to construct a SPA S

mem that defines the HMA A
mem, which

in turn characterizes =mem (for closed terms). Because this construction is quite
involved, we here only define the state set of Smem in order to illustrate the
valuation semantics that goes with CPmem, and refer to [6] for all further details
and proofs. Let Acore ⊂ A+ be the set of strings in which each element of A
occurs at most once. Then the function space

M = {T, F}Acore

is the state set of Smem. Define for f ∈ M the following: a ! f = f(a) and for
σ ∈ Acore,

(a • f)(σ) =
{
f(a) if σ = a or σ = ρa,

f(a(σ−a)) otherwise, where (σ−a) is as σ but with a left out.

For example, (a• f)(a) = (a• f)(ba) = f(a) and (a• f)(b) = (a• f)(ab) = f(ab).
In [6] we proved the following result.

Theorem 3. For |A| > 1, an HMA that characterizes CPmem exists, i.e. there
is an HMA Amem such that for all t, t′ ∈ TΣA

ce
,

CPmem � t = t′ ⇐⇒ A
mem |= t = t′.

Note that if A = {a} then M has only two states, say f and g with f(a) = T
and g(a) = F . It then easily follows that Amem |= T � a � T = T so in that case
Amem �∼= I(ΣA

ce,CPmem). Furthermore, note that if A ⊇ {a, b}, it easily follows
that Smem �|= a ∧�� b = b ∧�� a: take f such that f(a) = f(ab) = T and f(b) = F .
The following corollary is related to Theorem 3 and characterizes memorizing
congruence in terms of a quasivariety of SPAs that satisfy an extra condition.

Corollary 2. Let |A| > 1. Let Cmem be the class of SPAs that satisfy for all
a ∈ A and s ∈ S,

a ! (x • (a • s)) = a ! s ∧ a • (x • (a • s)) = x • (a • s).

(Note that with x = T this yields the axiom scheme from Corollary 1 that
characterizes contractive congruence.) Then for all t, t′ ∈ TΣA

ce
,

Cmem |= t = t′ ⇐⇒ CPmem � t = t′.

Proof. Somewhat involved; see [6]. �	

www.manaraa.com

Proposition Algebra and Short-Circuit Logic 27

Table 3. EqMSCL, a set of axioms for MSCL

F = ¬T (SCL1)

x ∨�� y = ¬(¬x ∧�� ¬y) (SCL2)

¬¬x = x (SCL3)

T ∧�� x = x (SCL4)

x ∧�� T = x (SCL5)

F ∧�� x = F (SCL6)

(x ∧�� y) ∧�� z = x ∧�� (y ∧�� z) (SCL7)

x ∧�� F = ¬x ∧�� F (SCL8∗)

x ∧�� (x ∨�� y) = x (MSCL1)

x ∧�� (y ∨�� z) = (x ∧�� y) ∨�� (x ∧�� z) (MSCL2)

(x ∨�� y) ∧�� (¬x ∨�� z) = (¬x ∨�� z) ∧�� (x ∨�� y) (MSCL3)

((x ∧�� y) ∨�� (¬x ∧�� z)) ∧�� u = (x ∨�� (z ∧�� u)) ∧�� (¬x ∨�� (y ∧�� u)) (MSCL4)

We conclude with a brief discussion about the short-circuit logic that is based
on CPmem. In this logic, only static side effects can occur: during the evaluation
of a propositional statement, the value of each atom remains fixed after its
first evaluation, which is a typical property axiomatized by CPmem. A major
difference with the short-circuit logics discussed in the previous sections is that
in CPmem the conditional is definable:

(y ∧�� x) ∨
��

(¬y ∧�� z) = T � (x � y � F) � (z � (F � y � T) � F)
= T � (x � y � F) � (F � y � z)

= (T � x � (F � y � z)) � y � (F � y � z)

= (T � x � F) � y � (F � y � z) by (6)

= x � y � z. by (5)

Definition 10. MSCL (Memorizing Short-Circuit Logic) is the short-
circuit logic that implies no other consequences than those of the module ex-
pression

{T,¬, ∧�� } � (CPmem + 〈 ¬x = F � x � T 〉+ 〈x ∧�� y = y � x � F 〉).

In Table 3 we present a set of axioms for MSCL and we refer to this set
by EqMSCL. Axioms (SCL1) − (SCL7) occur in EqFSCL (see Table 2) and
thus need no further comment, and neither does axiom (SCL8∗). The EqFSCL-
equations (SCL8)− (SCL10) are derivable from EqMSCL. For any further com-
ments, intuitions and proofs on MSCL we refer to [5], and we end this section
by recalling the main result from that paper:

Theorem 4 (Completeness). For all SCL-terms t and t′,

EqMSCL � t = t′ ⇐⇒ MSCL � t = t′.

www.manaraa.com

28 J.A. Bergstra and A. Ponse

An interesting aspect of this result is that we have a complete axiomatization
EqMSCL of a logic in which ∧�� is not commutative and in which x ∧�� F = F
does not hold, but that is otherwise very close to propositional logic.

6 Static Congruence (Propositional Logic)

In this section we consider static congruence defined by the axioms of CP and
the axioms

(x � y � z) � u � v = (x � u � v) � y � (z � u � v), (CPstat)

(x � y � z) � y � u = x � y � u. (CPcontr)

Following [4], we write CPstat for this set of axioms. Note that the symmetric
variants of the axioms (CPstat) and (CPcontr), say

x � y � (z � u � v) = (x � y � z) � u � (x � y � v), (CPstat′)

x � y � (z � y � u) = x � y � u, (CPcontr′)

easily follow with the (derivable) identity y � x� z = z � (F �x�T) � y. Moreover,
in CPstat it follows that

x = (x � y � z) � F � x

= (x � F � x) � y � (z � F � x) by (CPstat)

= x � y � x.

We define static congruence =stat on TΣA
ce
as the congruence generated by CPstat.

Let t, t′ ∈ TΣA
ce
. Then under static congruence, t and t′ can be rewritten into the

following special type of basic form: assume the atoms occurring in t and t′ are
a1, ..., an, and consider the full binary tree with at level i only occurrences of
atom ai (there are 2

i−1 such occurrences), and at level n+1 only leaves that are
either T or F (there are 2n such leaves). Then the axioms in CPstat are sufficient
to rewrite both t and t′ into exactly one such special basic form.

Theorem 5. There exists an HMA that characterizes static congruence, i.e.
there is an HMA Astat such that for all t, t′ ∈ TΣA

ce
,

CPstat � t = t′ ⇐⇒ A
stat |= t = t′.

Proof. Construct the ΣA
spa-algebra Sstat with TΣA

ce
/=stat as the set of conditional

expressions and the function space

S′ = {T, F}A

as the set of states. For each state f and atom a ∈ A define a ! f = f(a) and
a • f = f . Similar as in the proof of Theorem 1, the state constant c is given an
arbitrary interpretation, and the axioms (TS1)–(TS3) define the function s�f �s′

in S
stat. The axioms (SPA1)–(SPA6) fully determine the functions ! and •, and

www.manaraa.com

Proposition Algebra and Short-Circuit Logic 29

this is well-defined: if t =stat t
′ then for all f , t!f = t′ !f and t•f = t′•f follow by

inspection of the CPstat axioms. The axiom (SPA7) holds by construction of S′.
In order to prove that Sstat is a SPA it remains to be shown that axiom (SPA8)
holds. This follows by contraposition. We may assume that both t and t′ are in
the basic form described above: if t and t′ are different in some leaf then the
reply function f leading to this leaf satisfies t ! f �= t′ ! f .

Define the HMA Astat as the ΣA
ce-reduct of Sstat. The above argument on

the soundness of the axioms (CPstat) and (CPcontr) proves =⇒ as stated in
the theorem, and the soundness of axiom (SPA8) proves⇐=. Moreover, Astat ∼=
I(ΣA

ce,CPstat).

From the proof above it follows that for all t, t′ ∈ TΣA
ce
,

CPstat � t = t′ ⇐⇒ S
stat |= t = t′. (7)

Corollary 3. Let Cstat be the class of SPAs that satisfy for all a ∈ A and s ∈ S,

a • s = s.

Then for all t, t′ ∈ TΣA
ce
, Cstat |= t = t′ ⇐⇒ CPstat � t = t′.

Proof. By its definition, Sstat ∈ Cstat, which by (7) implies =⇒. For the converse,
it is sufficient to show that the axioms (CPstat) and (CPcontr) hold in each SPA
in Cstat. This follows easily from the Cstat-identity t • s = s that holds for all
t ∈ TΣA

ce
(see [6] for a detailed proof). �	

Finally, we return to short-circuit logic. It appears to be the case that the axiom

x ∧�� F = F (8)

marks the distinction between MSCL and propositional logic (PL): adding this
axiom to EqMSCL yields an equational characterization of PL (be it in sequential
notation and defined with short-circuit evaluation).

We write SSCL (static short-circuit logic) for the extension of the short-circuit
logic MSCL obtained by adding the associated axiom F � x � F = F to CPmem,
and we write EqSSCL for the extension of the axiom set EqMSCL with axiom (8).
It easily follows that

EqSSCL � x ∧�� ¬x = F,

and hence F and T are definable in SSCL. Also, commutativity of ∧�� is derivable
from EqSSCL (see [5]). By duality it follows that full distributivity holds in
EqSSCL, and it is not difficult to see that EqSSCL defines the mentioned variant
of PL: this follows for example immediately from [11] in which equational bases
for Boolean algebra are provided, and each of these bases can be easily derived
from EqSSCL (we return to this point in Section 7).

www.manaraa.com

30 J.A. Bergstra and A. Ponse

7 Discussion

In this section we further discuss our papers on proposition algebra and
short-circuit logic and briefly mention some issues not considered earlier.

In [4] we introduce ‘proposition algebra’ as a generic term for algebras that
model four basic axioms for Hoare’s conditional connective x � y � z (introduced
in [9]). We define valuation semantics using valuation algebras (VAs), which are
algebras over a signature that contains the Boolean constants and valuations as
sorts, and that satisfy axioms comparable to those that define a stateful propo-
sition algebra (a SPA). A valuation variety defines a valuation equivalence by
identifying all propositional statements that yield the same evaluation result in
all VAs in that variety. For example, T and T � a � T are valuation equivalent in
all valuation varieties we consider. The largest congruence contained in a given
valuation equivalence is then the ‘valuation congruence’ to be considered. Main
results in [4] are the concise axiomatizations of various valuation congruences
(some more than discussed in this paper), and a proof that modulo contrac-
tive congruence (or any finer congruence), the conditional, in particular a � b � c
with a, b and c atoms, is not definable by sequential binary operators. The ax-
iom set CP characterizes the least identifying valuation congruence we consider,
and CP extended with the axiom (CPmem) characterizes memorizing congru-
ence, the most identifying valuation congruence below propositional logic that
we distinguish. These valuation congruences are ordered in an incremental way,
gradually identifying more propositional statements, and have axiomatizations
that all share the axioms of CP.3 In [4] we also consider some complexity issues:
in each VA the satisfiability problem SAT can be defined in a natural way and in
all valuation congruences defined thus far, SAT is in NP, and in some cases even
in P: in the free CP-algebra SAT is polynomial, while in memorizing congruence
the complexity of SAT is increased to NP-complete.

In our report [6] we provide an alternative valuation semantics for proposition
algebra in the form of HMAs that appears to be more elegant: HMA-based
semantics has the advantage that one can define a valuation congruence without
first defining the valuation equivalence it is contained in. Furthermore, we show
in [6] that not all proposition algebras are HMAs. In particular, we prove that
CP + 〈T � x � T = T 〉 has a non-trivial initial algebra (which by definition
is a proposition algebra) that is not an HMA because each HMA satisfies the
conditional equation ((T � x � T = T)∧ (T � y � T = T))→ T � x � y = T � y � x,
while CP + 〈T � x � T = T 〉 �� T � a � b = T � b � a for distinct atoms a and b.

In [5] we introduce short-circuit logic: we show that the extension of CPmem

with ¬ and ∧�� (and with F and ∨�� being definable) characterizes a reason-
able logic if one restricts to identities defined over the signature {T,¬, ∧�� }. As
recalled in the present paper, we provide an axiomatization of MSCL (memoriz-
ing short-circuit logic) and we define FSCL (free short-circuit logic) as the most
basic (least identifying) short-circuit logic. Each valuation congruence defines a

3 In [10] it is noted that if the set A of atoms contains one element, all valuation con-
gruences other than structural congruence coincide with static valuation congruence.

www.manaraa.com

Proposition Algebra and Short-Circuit Logic 31

short-circuit logic, and these logics are put forward for modeling conditions as
used in programming with short-circuit evaluation and for that reason we named
them “short-circuit logics”. Typical axioms that are valid in FSCL (and thus in
each short-circuit logic) are the associativity of ∧�� , the double negation shift and
F ∧�� x = F , and we conjecture that FSCL is axiomatized by the equations in
Table 2. Furthermore, as noted in Section 5, a typical non-validity is x ∧�� F = F ,
which does not hold modulo memorizing congruence (or any finer congruence).
The extension of CPmem with the axiom F �x�F = F that defines SSCL (static
short-circuit logic, comprising x ∧�� F = F), or equivalently, the extension of
CPmem with the axiom T �x�T = T , yields an axiomatization of static valuation
congruence that is perhaps more elegant than our axiomatization CPstat: using
the expressibility of conditional composition and the commutativity of ∧�� and ∨��

(and hence full distributivity), it is not hard to derive the axiom (CPstat). In [5,
Appendix C] we provide another axiomatization of static valuation congruence
that is even more elegant than CPmem + 〈F � x � F = F 〉. This axiomatization
consists of the five axioms (CP1), (CP2), (CP4) (see Table 1),

T � x � y = T � y � x and (x � y � z) � y � F = x � y � F,

and we also prove that it is independent.

References

1. Bergstra, J.A., Bethke, I., Rodenburg, P.H.: A propositional logic with 4 val-
ues: true, false, divergent and meaningless. Journal of Applied Non-Classical Log-
ics 5(2), 199–218 (1995)

2. Bergstra, J.A., Heering, J., Klint, P.: Module algebra. Journal of the ACM 37(2),
335–372 (1990)

3. Bergstra, J.A., Middelburg, C.A.: Instruction sequence processing operators
(2009), http://arxiv.org/:ArXiv:0910.5564v2 [cs.LO]

4. Bergstra, J.A., Ponse, A.: Proposition algebra. ACM Transactions on Computa-
tional Logic 12(3), Article 21 (36 pages) (2011)

5. Bergstra, J.A., Ponse, A.: Short-circuit logic (2010/2011),
http://arxiv.org/abs/1012.3674v3 [cs.LO]

6. Bergstra, J.A., Ponse, A.: On Hoare-McCarthy algebras (2010),
http://arxiv.org/abs/1012.5059v1 [cs.LO]

7. Bloom, S.L., Tindell, R.: Varieties of “if-then-else”. SIAM Journal of Comput-
ing 12(4), 677–707 (1983)

8. Mekler, A.H., Nelson, E.M.: Equational bases for if-then-else. SIAM Journal of
Computing 16(3), 465–485 (1987)

9. Hoare, C.A.R.: A couple of novelties in the propositional calculus. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik 31(2), 173–178 (1985)

10. Regenboog, B.C.: Reactive valuations. MSc. thesis Logic, University of Amsterdam.
December 2010, http://arxiv.org/abs/1101.3132v1 [cs.LO] (2011)

11. Sioson, F.M.: Equational bases of Boolean algebras. Journal of Symbolic
Logic 29(3), 115–124 (1964)

12. Terese. Term Rewriting Systems. Cambridge Tracts in Theoretical Computer
Science, vol. 55. Cambridge University Press (2003)

http://arxiv.org/:ArXiv:0910.5564v2
http://arxiv.org/abs/1012.3674v3
http://arxiv.org/abs/1012.5059v1
http://arxiv.org/abs/1101.3132v1

www.manaraa.com

Decompositional Reasoning

about the History of Parallel Processes�

Luca Aceto1, Arnar Birgisson2,
Anna Ingólfsdóttir1, and MohammadReza Mousavi3

1 School of Computer Science, Reykjavik University, Iceland
2 Department of Computer Science and Engineering,

Chalmers University of Technology, Sweden
3 Department of Computer Science, TU/Eindhoven, The Netherlands

Abstract. This paper presents a decomposition technique for Hennessy-
Milner logic with past and its extension with recursively defined formu-
lae. In order to highlight the main ideas and technical tools, processes
are described using a subset of CCS with parallel composition, nonde-
terministic choice, action prefixing and the inaction constant. The study
focuses on developing decompositional reasoning techniques for parallel
contexts in that language.

1 Introduction

State-space explosion is amajor obstacle inmodel checking logical properties. One
approach to combat this problem is compositional reasoning, where properties of a
system as a whole are deduced in a principled fashion from properties of its compo-
nents. The study of compositional proof systems for various temporal and modal
logics has attracted considerable attention in the concurrency-theory literature
and several compositional proof systems have been proposed for such logics over
(fragments of) process calculi. (See, e.g., [6,36,37,41].) A related line of research is
the one devoted to (de)compositional model checking [5,19,25,31,42]. Decompo-
sitional reasoning aims at automatically decomposing the global property to be
model checked into local properties of (possibly unknown) components—a tech-
nique that is often called quotienting. In the context of process algebras, as the lan-
guage for describing reactive systems, and (extensions of) Hennessy-Milner logic
(HML), as the logical specification formalism for describing their properties, de-
compositional reasoning techniques date back to the seminal work of Larsen and
Liu in the 1980’s and early 1990’s [29,31], which is further developed in,

� The work of Aceto, Birgisson and Ingólfsdóttir has been partially supported by the
projects “New Developments in Operational Semantics” (nr. 080039021) and “Meta-
theory of Algebraic Process Theories” (nr. 100014021) of the Icelandic Research
Fund. Birgisson has been further supported by research-student grant nr. 080890008
of the Icelandic Research Fund and by grants from the Swedish research agencies
SSF and VR.

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 32–47, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

Decompositional Reasoning about the History of Parallel Processes 33

e.g., [7,9,10,12,18,23,25,26,35]. However, we are not aware of any such decomposi-
tion technique that applies to reasoning about the “past”. This is particularly in-
teresting in the light of recent developments concerning reversible processes [13,34]
and knowledge representation (epistemic aspects) inside process algebra [14,20],
all of which involve some notion of specification and reasoning about the past.
Moreover, a significant body of evidence indicates that being able to reason about
the past is useful in program verification [22,28,32].

In this paper, we address the problem of developing a decomposition technique
for Hennessy-Milner logic with past [16,17,27] and for its extension with recur-
sively defined formulae. This way, we obtain a decomposition technique for the
modal μ-calculus with past [21,33]. Apart from its intrinsic interest, the decom-
positionality results we present in this paper also shed light on the expressiveness
of the logics we consider. For example, as shown in, e.g., [2,3], the closure of a
logic with respect to quotienting is closely tied to its ability to express properties
that can be tested by performing reachability analysis of processes in the context
of so-called test automata. As the language for describing processes, in order to
highlight the main ideas and technical tools in our approach, we use a subset of
CCS with parallel composition, nondeterministic choice, action prefixing and the
inaction constant. Our results, however, extend naturally to other classic parallel
composition operators from the realm of process algebra, such as the general one
considered in the literature on ACP [8], and to a setting where (possibly infinite)
synchronization trees [40] are used as a model of process behaviour.

As the work presented in this paper shows, the development of a theory of
decompositional reasoning in a setting with past modalities involves subtleties
and design decisions that do not arise in previous work on HML and Kozen’s μ-
calculus [24]. For instance, the decompositionality result for HML with past and
its extension with recursively defined formulae rests on a decomposition of compu-
tations of parallel processes into sets of pairs of computations of their components,
whose concurrent execution might have produced the original parallel computa-
tions. Moreover, as explained in detail in the main body of the paper, the presence
of past modalities leads us to consider computations of the components of a par-
allel process that may explicitly include stuttering steps—that is, steps where the
component under consideration is idle, while a computation step takes place else-
where in the parallel system. The main results of the paper (Theorems 1 and 2)
roughly state that if a computation π of a parallel process p ‖ q satisfies a for-
mula ϕ in one of the logics we study then, no matter what decomposition of π
we pick, the contribution of p to the computation π will satisfy the “quotient of
ϕ with respect to the contribution of q to π.” Conversely, if there is some way
of decomposing π, in such a way that the contribution of p to the computation
π satisfies the “quotient of ϕ with respect to the contribution of q to π”, then
the computation π of the parallel process p ‖ q is guaranteed to satisfy ϕ.

The rest of this paper is structured as follows. Section 2 introduces prelimi-
nary definitions and the extension of Hennessy-Milner logic with past. Section 3
discusses how parallel computations are decomposed into their components.
Section 4 presents the decompositional reasoning technique and the first main

www.manaraa.com

34 L. Aceto et al.

theorem of the paper. Section 5 extends the theory to recursively defined formu-
lae, and Section 6 discusses related work and possible extensions of our results.
Due to space limitation, the proofs of the results are included in the extended
version of this paper [1].

2 Preliminaries

A labelled transition system (LTS) is a triple 〈P,A, −→ 〉 where

– P is a set of process names,
– A is a finite set of action names, not including a silent action τ (we write
Aτ for A ∪ {τ}), and

– −→ ⊆ P ×Aτ ×P is the transition relation; we call its elements transitions
and usually write p

α−→ p′ to mean that (p, α, p′) ∈−→.

We let p, q, . . . range over P , a, b, . . . over A and α, β, . . . over Aτ .
For any set S, we let S∗ be the set of finite sequences of elements from S.

Concatenation of sequences is represented by juxtaposition. λ denotes the empty
sequence and |w| stands for the length of a sequence w.

Given an LTS T = 〈P,A, −→ 〉, we define a path from p0 to be a sequence

of transitions p0
α0−→ p1, p1

α1−→ p2, . . . , pn−1
αn−1−→ pn and usually write this as

p0
α0−→ p1

α1−→ p2
α2−→ · · · αn−1−→ pn.

We use π, μ, ... to range over paths. A computation from p is a pair (p, π),
where π is a path from p, and we use ρ, ρ′, . . . to range over computations.
CT (p), or simply C(p) when the LTS T is clear from the context, is the set of
computations from p and CT is the set of all computations in T .

For a computation ρ = (p0, π), where π = p0
α0−→ p1

α1−→ p2
α2−→ · · · αn−1−→ pn,

we define first(ρ) = first(π) = p0, last(ρ) = last(π) = pn, and |ρ| = |π| = n.
Concatenation of computations ρ and ρ′ is denoted by their juxtaposition ρρ′

and is defined iff last(ρ) = first(ρ′). When last(ρ) = p we write ρ(p
α−→ q) as a

shorthand for the slightly longer ρ(p, p
α−→ q). We also use ρ

α−→ ρ′ to denote

that there exists a computation ρ′′ = (p, p
α−→ p′), for some processes p and p′,

such that ρ′ = ρρ′′.

Definition 1 (Hennessy-Milner logic with past). Let T = 〈P,A,→〉 be an
LTS. The set HML

�
(A), or simply HML

�
, of Hennessy-Milner logic formulae

with past is defined by the following grammar, where α ∈ Aτ .

ϕ, ψ ::= � | ϕ ∧ ψ | ¬ϕ | 〈α〉ϕ | 〈←α〉ϕ.

We define the satisfaction relation �⊆ CT × HML
�

as the least relation that
satisfies the following clauses:

– ρ � � for all ρ ∈ CT ,
– ρ � ϕ ∧ ψ iff ρ � ϕ and ρ � ψ,
– ρ � ¬ϕ iff not ρ � ϕ,

www.manaraa.com

Decompositional Reasoning about the History of Parallel Processes 35

– ρ � 〈α〉ϕ iff ρ
α−→ ρ′ and ρ′ � ϕ for some ρ′ ∈ CT , and

– ρ � 〈←α〉ϕ iff ρ′
α−→ ρ and ρ′ � ϕ for some ρ′ ∈ CT .

For a process p ∈ P , we take p � ϕ to mean (p, λ) � ϕ.

We make use of some standard short-hands for Hennessy-Milner-type logics, such
as ⊥ = ¬�, ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ), [α]ϕ = ¬〈α〉(¬ϕ) and [←α]ϕ = ¬〈←α〉(¬ϕ).
For a finite set of actions B, we also use the following notations.

〈←B〉ϕ =
∨
α∈B

〈←α〉ϕ [←B]ϕ =
∧
α∈B

[←α]ϕ

It is worth mentioning that the operators 〈·〉 and 〈←·〉 are not entirely symmet-
ric. The future is nondeterministic; the past is, however, always deterministic.
This is by design, and we could have chosen to model the past as nondeterminis-
tic as well, i.e., to take a possibilistic view where we would consider all possible
histories. Overall, the deterministic view is more appropriate for our purposes.
See, e.g., [28] for a clear discussion of possible approaches in modelling the past
and further references.

3 Decomposing Computations

In this section, following [5,25,31], we aim at defining a notion of “formula
quotient with respect to a process in a parallel composition” for formulae in
HML

�
. In our setting, this goal translates into a theorem of the form ρ � ϕ

iff ρ1 � ϕ/ρ2, where ρ, ρ1, ρ2 are computations such that ρ is a computation
of a “parallel process” that is, in some sense, the “parallel composition” of ρ1
and ρ2.

In the standard setting, definitions of “formula quotients” are based on local
information that can be gleaned from the operational semantics of the chosen
notion of parallel composition operator. In the case of computations, however,
such local information does not suffice. A computation arising from the evolution
of two processes run in parallel has the form (p ‖ q, π), where p ‖ q is a syntac-
tic representation of the initial state and π is the path leading to the current
state. The path π, however, may involve contributions from both of the parallel
components. Separating the contributions of the components for the purposes of
decompositional model checking requires us to unzip these paths into separate
paths that might have been observed by considering only one argument of the
composition. This means that we have to find two paths πp and πq such that
(p, πp) and (q, πq) are, in some sense, independent computations that run in
parallel will yield (p ‖ q, π).

CCS Computations and Their Decomposition. For this study, in order to high-
light the main ideas and technical tools in our approach, we restrict ourselves
to a subset of CCS, namely CCS without renaming, restriction or recursion.

www.manaraa.com

36 L. Aceto et al.

(We discuss possible extensions of our results in Section 6.) Processes are thus
defined by the grammar

p, q ::= 0 | α.p | p+ q | p ‖ q

and their operational semantics is given by the following rules.

α.p
α−→ p

p
α−→ p′

p+ q
a−→ p′

q
α−→ q′

p+ q
a−→ q′

p
α−→ p′

p ‖ q α−→ p′ ‖ q
q

α−→ q′

p ‖ q α−→ p ‖ q′
p

a−→ p′ q
ā−→ q′

p ‖ q τ−→ p′ ‖ q′

We write p
α−→ q to denote that this transition is provable by these rules. We

assume also that ·̄ : A → A is a bijective function on action names such that
¯̄a = a.

The decomposition of a computation resulting from the evolution of two par-
allel components must retain the information about the order of steps in the
interleaved computation. We do so by modelling the decomposition using stut-
tering computations. These are computations that are not only sequences of
transition triplets, but may also involve pseudo-steps labelled with ���. Intu-
itively, p ��� p means that process p has remained idle in the last transition
performed by a parallel process having p as one of its parallel components. We
denote the set of stuttering computations with C∗T or simply C∗. For example,

the computation (a.0 ‖ b.0, a.0 ‖ b.0 a−→ 0 ‖ b.0 b−→ 0 ‖ 0) is decomposed into

the stuttering computations (a.0, a.0
a−→ 0 ��� 0) and (b.0, b.0 ��� b.0 b−→ 0).

However, the decomposition of a parallel computation is not in general unique,
as there may be several possibilities stemming from different synchronization
patterns. For example consider a computation with path (a.0+ b.0) ‖ (ā.0+ b̄.0)
τ−→ 0 ‖ 0. From this computation it is not possible to distinguish if the transi-

tion labelled with τ was the result of communication of the a and ā actions, or
of the b and b̄ actions. We thus consider all possibilities simultaneously, i.e., a
decomposition of a computation is actually a set of pairs of components.

The following function over paths defines the decomposition of a computation.

D(λ) = {(λ, λ)}
D(π(p ‖ q ��� p ‖ q)) = {(μ1(p ��� p), μ2(q ��� q)) | (μ1, μ2) ∈ D(π)}

D(π(p ‖ q α−→ p′ ‖ q′)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(μ1(p
α−→ p′), μ2(q ��� q))

| (μ1, μ2) ∈ D(π)} if q = q′

{(μ1(p ��� p), μ2(q α−→ q′))

| (μ1, μ2) ∈ D(π′)} if p = p′

{(μ1(p a−→ p′), μ2(q
ā−→ q′))

| (μ1, μ2) ∈ D(π), a ∈ A,
p

a−→ p′, q
ā−→ q′} otherwise

www.manaraa.com

Decompositional Reasoning about the History of Parallel Processes 37

Note that if (μ1, μ2) is a decomposition of a computation π, then the three
computations have the same length. Furthermore last(π) = last(μ1) ‖ last(μ2).

Another notable property of path decomposition is that it is injective, i.e., a
pair (μ1, μ2) can only be the decomposition of at most one path.

Lemma 1. Let π1 be a path of a parallel computation and (μ1, μ2) ∈ D(π1). If
π2 is a path such that (μ1, μ2) ∈ D(π2) also, then π1 = π2.

We now aim at defining the quotient of an HML
�
-formula ϕ with respect to a

computation (q, μ2), written ϕ/(q, μ2), in such a way that a property of the form

(p ‖ q, π) � ϕ ⇔ (p, μ1) � ϕ/(q, μ2)

holds when (μ1, μ2) ∈ D(π). However, since we are dealing with sets of decom-
positions, we need to quantify over these sets. It turns out that a natural way
to do so, which also gives a strong result, is as follows. Given that a composed
computation satisfies a formula, we prove in Section 4 that one component of
every decomposition satisfies a formula quotiented with the other component:

(p ‖ q, π) � ϕ ⇒ ∀(μ1, μ2) ∈ D(π) : (p, μ1) � ϕ/(q, μ2).

On the other hand, to show the implication from right to left, we need only one
witness of a decomposition that satisfies a quotiented formula to deduce that
the composed computation satisfies the original one:

∃(μ1, μ2) ∈ D(π) : (p, μ1) � ϕ/(q, μ2) ⇒ (p ‖ q, π) � ϕ.

In order to define the quotienting transformation, we need a logic that allows us
to describe properties of computations involving explicit pseudo-steps. To this
end, we now extend HML

�
with two additional modal operators.

Definition 2 (Stuttering Hennessy-Milner logic with past). Consider
an LTS T = 〈P,A,→〉. The set HML∗

�
(A), or simply HML∗

�
, of stuttering

Hennessy-Milner logic formulae with past is defined by the grammar

ϕ, ψ ::= � | ϕ ∧ ψ | ¬ϕ | 〈α〉ϕ | 〈←α〉ϕ | 〈���〉ϕ | 〈���〉ϕ

where α ∈ Aτ . The satisfaction relation �∗⊆ C∗T ×HML∗
�
is defined in the same

manner as for Hennessy-Milner logic with past, by extending Definition 1 with
the following two items.

– ρ �∗ 〈���〉ϕ iff ρ(p ��� p) �∗ ϕ where p = last(ρ).

– ρ �∗ 〈���〉ϕ iff ρ′ �∗ ϕ where ρ = ρ′(p ��� p) for some p.

Similarly, �∗ ∈ P ×HML∗
�

is defined by p �∗ ϕ if and only if (p, λ) �∗ ϕ.

The satisfaction relations �∗ and � coincide over CT ×HML
�
.

www.manaraa.com

38 L. Aceto et al.

Why Are the Pseudo-steps Necessary? One may ask why we need to extend
both the computations and the logic to include the notion of pseudo-steps. The
reason for doing so is to capture information about the interleaving order in
component computations. This in turn is necessary because the original logic can
differentiate between different interleavings of parallel processes. For an example,

consider the computation (a.0 ‖ b.0, π), where π = a.0 ‖ b.0 a−→ 0 ‖ b.0 b−→ 0 ‖ 0.
Clearly this computation does not satisfy the formula 〈←a〉�.

Another interleaving of the same parallel composition is the computation

(a.0 ‖ b.0, π′), where π′ = a.0 ‖ b.0 b−→ a.0 ‖ 0
a−→ 0 ‖ 0. This computation,

on the other hand, does satisfy 〈←a〉�. Since the logic can distinguish between
different interleaving orders of a parallel computation, it is vital to maintain
information about the interleaving order in our decomposition. If the decom-
position of the above computations only considered the actions contributed by
each component, this information would be lost and the two paths would have
the same decomposition. As a result, we could not reasonably expect to test if
they satisfy the formula 〈←a〉� in a decompositional manner.

4 Decompositional Reasoning

We now define the quotienting construction over formulae structurally. The com-
plete quotienting transformation is given in Table 1. Below we limit ourselves to
discussing the quotienting transformation for formulae of the form 〈←α〉ϕ.

To define the transformation for formulae of that form, we examine several
cases separately. First we consider the case when ρ has the empty path. In this
case it is obvious that no backward step is possible and therefore:

(〈←α〉ϕ)/(p, λ) = ⊥.

The second case to consider is when ρ ends with a pseudo-transition. In this case
the only possibility is that the other component (the one we are testing) is able
to perform the backward transition.

(〈←α〉ϕ)/ρ′(p′ ��� p′) = 〈←α〉(ϕ/ρ′)

The third case applies when ρ does indeed end with the transition we look for.
In this case the other component must end with a matching pseudo-transition.

(〈←α〉ϕ)/ρ′(p′′ α−→ p′) = 〈���〉(ϕ/ρ′) (1)

The only remaining case to consider is when ρ ends with a transition different
from the one we look for. We split this case further and consider again separately
the cases when α ∈ A and when α = τ . The former case is simple: if ρ indicates
that the last transition has a label other than the one specified in the diamond
operator, the composite computation cannot satisfy 〈←a〉ϕ because the other
component must have performed a pseudo-step.

(〈←a〉ϕ)/ρ′(p′′ β−→ p′) = ⊥ where a �= β

www.manaraa.com

Decompositional Reasoning about the History of Parallel Processes 39

Table 1. Quotienting transformations of formulae in HML∗
�
, where p′ = last(ρ)

�/ρ = �
(ϕ1 ∧ ϕ2)/ρ = ϕ1/ρ ∧ ϕ2/ρ
(¬ϕ)/ρ = ¬(ϕ/ρ)
(〈a〉ϕ)/ρ = 〈a〉 (ϕ/ρ(p′ ��� p′)) ∨

(∨
ρ′:ρ a→ ρ′ 〈���〉(ϕ/ρ′)

)

(〈τ 〉ϕ)/ρ = 〈τ 〉 (ϕ/ρ(p′ ��� p′)) ∨
(∨

ρ′:ρ τ→ ρ′ 〈���〉(ϕ/ρ′)
)
∨
(∨

ρ′,a:ρ a→ ρ′ 〈ā〉(ϕ/ρ′)
)

(〈←α〉ϕ)/(p, λ) = ⊥
(〈←α〉ϕ)/ρ′(p′ ��� p′) = 〈←α〉(ϕ/ρ′)
(〈←α〉ϕ)/ρ′(p′′ α−→ p′) = 〈���〉(ϕ/ρ′)
(〈←a〉ϕ)/ρ′(p′′ β−→ p′) = ⊥ where a
= β

(〈←τ 〉ϕ)/ρ′(p′′ b−→ p′) = 〈← b̄〉(ϕ/ρ′)
(〈���〉ϕ)/ρ = 〈���〉 (ϕ/ρ(p′ ��� p′))

(〈���〉ϕ)/ρ =

{
〈���〉(ϕ/ρ′) if ρ = ρ′(p′ ��� p′)

⊥ otherwise

If however the diamond operator mentions a τ transition, then we must look for
a transition in the other component that can synchronise with the last one of ρ.
Note that this case does not include computations ending with a τ transition,
as that case is covered by Equation (1).

(〈←τ〉ϕ)/ρ′(p′′ b−→ p′) = 〈← b̄〉(ϕ/ρ′)

This covers all possible cases for 〈←α〉ϕ/ρ.
We are now ready to prove the main theorem in this section, to the effect

that the quotienting of a formula ϕ with respect to a computation ρ is properly
defined.

Theorem 1. For CCS processes p, q and a computation (p ‖ q, π) ∈ C(p ‖ q)
and a formula ϕ ∈ HML∗

�
, we have

(p ‖ q, π) �∗ ϕ ⇒ ∀(μ1, μ2) ∈ D(π) : (p, μ1) �∗ ϕ/(q, μ2) (2)

and, conversely,

(p ‖ q, π) �∗ ϕ ⇐ ∃(μ1, μ2) ∈ D(π) : (p, μ1) �∗ ϕ/(q, μ2). (3)

Theorem 1 uses the existential quantifier in the right-to-left direction. This makes
it easy to show that a computation of a process of the form p ‖ q satisfies a for-
mula, given only one witness of a decomposition with one component satisfying
the corresponding quotient formula. Note, however, that the set of decomposi-
tions of any given process is never empty, i.e., every parallel computation has a
decomposition. This allows us to write the above theorem in a more symmetric
form.

Corollary 1. For CCS processes p, q, a parallel computation (p ‖ q, π) and a
formula ϕ ∈ HML∗

�
, we have (p ‖ q, π) �∗ ϕ iff (p, μ1) �∗ ϕ/(q, μ2), for each

(μ1, μ2) ∈ D(π).

www.manaraa.com

40 L. Aceto et al.

5 Adding Recursion to HML∗
�

In this section, we extend the results from Section 4 to a version of the logic
HML∗

�
that includes (formula) variables and a facility for the recursive definition

of formulae. Following, e.g., [30], the intended meaning of a formula variable is
specified by means of a declaration, i.e., a mapping from variables to formulae,
which may themselves contain occurrences of variables. A declaration is nothing
but a system of equations over the set of formula variables.

By using the extension of the logic HML∗
�

discussed in this section, we can
reason about properties of processes and computations that go beyond one step
of lookahead or look-back. For example we can phrase the question “Has the
action α ever happened in the past?” as the least model of a suitable recursive
logical property.

Definition 3. Let A be a finite set of actions and let X be a finite set of iden-
tifiers. The set HML∗

�,X (A), or simply HML∗
�,X , is defined by the grammar

ϕ, ψ ::= � | ϕ ∧ ψ | ¬ϕ | 〈α〉ϕ | 〈←α〉ϕ | 〈���〉ϕ | 〈���〉ϕ | X

where X ∈ X . A declaration over X is a function D : X → HML∗
�,X , assigning a

formula to each variable contained in X , with the restriction that each occurrence
of a variable in a formula in the range of D is positive, i.e., any variable is within
the scope of an even number of negations.

When reasoning about recursive formulae, it is technically convenient to define
their meaning (i.e., the set of computations that satisfy them) denotationally,
because well-definedness of the semantics of recursive formulae relies on Tarski’s
fixed point theory. This in turn, depends on a notion of monotone function over
a lattice, which is best described by the denotation function and the usual sub-
set ordering on the set of states satisfying a formula. For the sake of clarity, we
rephrase Definition 2 in a denotational setting. As it is customary, the following
definition makes use of a notion of environment to give meaning to formula vari-
ables. An environment is a function σ : X → P(C∗). Intuitively, an environment
assigns to each variable the set of computations that are assumed to satisfy it.
We write EX for the set of environments over the set of (formula) variables X .
It is well-known that EX is a complete lattice when environments are ordered
pointwise using set inclusion.

Definition 4 (Denotational semantics of HML∗
�,X). Let T = 〈P,A,→〉

be an LTS. Let ϕ be a HML∗
�,X formula and let σ be an environment. The

denotation of ϕ with respect to σ, written [[ϕ]]σ, is defined structurally as follows:

[[�]]σ = C∗T [[¬ϕ]]σ = C∗T \ [[ϕ]]σ
[[X]]σ = σ(X) [[ϕ ∧ ψ]]σ = [[ϕ]]σ ∩ [[ψ]]σ

[[〈α〉ϕ]]σ = 〈·α·〉[[ϕ]]σ [[〈←α〉ϕ]]σ = 〈· ←α·〉[[ϕ]]σ
[[〈���〉ϕ]]σ = 〈· ��� ·〉[[ϕ]]σ [[〈���〉ϕ]]σ = 〈· ��� ·〉[[ϕ]]σ,

www.manaraa.com

Decompositional Reasoning about the History of Parallel Processes 41

where the operators 〈·α·〉, 〈· ←α·〉, 〈· ��� ·〉, 〈· ��� ·〉 : P(C∗T) → P(C∗T) are
defined thus:

〈·α·〉S = {ρ ∈ C∗T | ∃ρ′ ∈ S : ρ
α−→ ρ′}

〈· ←α·〉S = {ρ ∈ C∗T | ∃ρ′ ∈ S : ρ′
α−→ ρ}

〈· ��� ·〉S = {ρ ∈ C∗T | ∃ρ′ ∈ S : ρ ��� ρ′} and
〈· ��� ·〉S = {ρ ∈ C∗T | ∃ρ′ ∈ S : ρ′ ��� ρ}.

The satisfaction relation �σ⊆ C∗T ×HML∗
�,X is defined by

ρ �σ ϕ ⇔ ρ ∈ [[ϕ]]σ.

It is not hard to see that, for formulae in HML∗
�
, the denotational semantics

is independent of the chosen environment and is equivalent to the satisfaction
relation offered in Definition 2.

The semantics of a declaration D is given by a model for it, namely by an
environment σ such that σ(X) = [[D(X)]]σ, for each variable X ∈ X . For every
declaration there may be a variety of models. However, we are usually interested
in either the greatest or the least models, since they correspond to safety and
liveness properties, respectively. In the light of the positivity restrictions we have
placed on the formulae in the range of declarations, each declaration always has
least and largest models by Tarski’s fixed-point theorem [38]. See, e.g., [4,30] for
details and textbook presentations.

Decomposition of Formulae in HML∗
�,X . We now turn to the transformation of

formulae, so that we can extend Theorem 1 to include formulae from HML∗
�,X .

Our developments in this section are inspired by [23], but the technical details
are rather different and more involved.

In Section 4 we defined how a formula ϕ is quotiented with respect to a com-
putation ρ. In particular, the quotiented formula �/ρ is � for any computation
ρ. This works well in the non-recursive setting, but there is a hidden assump-
tion that we must expose before tackling recursive formulae. In Theorem 1, the
satisfaction relations are actually based on two different transition systems. By
way of example, consider the expression on the right-hand side of (2), namely

∀(μ1, μ2) ∈ D(π) : (p, μ1) � ϕ/(q, μ2).

When establishing this statement, we have implicitly assumed that we are work-
ing within the transition system of computations from p that are compatible with
the computations from q—i.e., above, μ1 really is a path that is the counterpart
of μ2 in a decomposition of the path π.

Intuitively, the set of computations that satisfy a quotient formula ϕ/ρ is the
set of computations that are compatible with ρ and whose composition with ρ
satisfies the formula ϕ. However, defining �/ρ = � does not match this intuition,
if we take the denotational viewpoint of the formula � on the right-hand side
as representing all possible computations. In fact, we expect �/ρ to represent
only those computations that are compatible with ρ. We formalize the notion of
pairs of compatible computations and refine our definition of �/ρ.

www.manaraa.com

42 L. Aceto et al.

Definition 5. Paths μ1 and μ2 are compatible with each other if and only if
they have the same length and one of the following holds if they are non-empty.

– If μ1 = μ′1(p
′′ τ−→ p′) then μ2 = μ′2(q

′ ��� q′) and μ′1 and μ′2 are compatible.

– If μ1 = μ′1(p
′′ a−→ p′) then either μ2 = μ′2(q

′′ ā−→ q′) or μ2 = μ′2(q
′ ��� q′);

and in both cases μ′1 and μ′2 are compatible.

– If μ1 = μ′1(p
′′ ��� p′) then either μ2 = μ′2(q

′′ α−→ q′), for some action α, or
μ2 = μ′2(q

′ ��� q′); and in both cases μ′1 and μ′2 are compatible.

We say that two computations are compatible with each other if their paths are
compatible.

We now revise our transformation of the formula�. We want�/ρ to be a formula
that is satisfied by the set of all computations that are compatible with ρ. It
turns out this can be expressed in HML∗

�
as described below.

Definition 6. Let π be a path of transitions in the LTS T = 〈P,A,→〉. Then
the HML∗

�
formula �π is defined as follows.

�λ = [←Aτ]⊥ ∧ [���]⊥
�

π′(p τ−→ p′) = 〈���〉�π′

�
π′(p a−→ p′) = 〈← ā〉�π′ ∨ 〈���〉�π′

�π′(p ��� p′) = 〈←Aτ 〉�π′ ∨ 〈���〉�π′

Our reader may notice that this is a rewording of Definition 5, and it is easy to
see that the computations satisfying �π are exactly the computations that have
paths compatible with π. Now the revised transformation of � is

�/(p, π) = �π, (4)

which matches our intuition. For the constructs in the logic HML∗
�
, we can reuse

the transformation defined in Section 4. We therefore limit ourselves to highlight-
ing how to quotient formulae of the form X . However, instead of decomposing
formulae of this form, we treat the quotient X/ρ as a variable, i.e., we use the
set X ×C as our set of variables. The intuitive idea of such variables is as follows:

(p, μ1) �σ′ X/(q, μ2)⇔ (p ‖ q, π) �σ X ⇔ (p ‖ q, π) ∈ σ(X),

where σ is an environment for a declaration D over the variables X , σ′ is an
environment for a declaration D′ over the variables X ×C, and (μ1, μ2) ∈ D(π).
We explain below the relation between D and D′ as well as the one between σ
and σ′.

Formally, the variables used in quotienting our logic are pairs (X, ρ) ∈ X ×C.
Formulae of the form X are simply rewritten as X/ρ = (X, ρ), where the X/ρ
on the left-hand side denotes the transformation (as in Section 4) and the pair
on the right-hand side is the variable in our adapted logic. When there is no risk
of ambiguity, we simply use the notation X/ρ to represent the variable (X, ρ).

www.manaraa.com

Decompositional Reasoning about the History of Parallel Processes 43

Transformation of Declarations. Generating the transformed declaration D′

from a declaration D is done as follows:

D′(X/ρ) = D(X)/ρ. (5)

Note that the rewritten formula on the right-hand side may introduce more
variables which obtain their values in D′ in the same manner.

Transformation of Environments. The function Φ maps environments over X to
environments over X × C thus:

σ′(X/(q, μ2)) = Φ(σ)(X/(q, μ2))

= {(p, μ1) | (p ‖ q, π) ∈ σ(X)

for some π with (μ1, μ2) ∈ D(π)}.

Our order of business now is to show that if σ is the least (respectively, largest)
model for a declaration D, then σ′ is the least (respectively, largest) model for D′

and vice versa. In particular, we show that there is a bijection relating models
of D and models of D′, based on the mapping Φ. First we define its inverse.
Consider the function Ψ , which maps an environment over X ×C to one over X .

Ψ(σ′)(X) = {(p ‖ q, π) | ∀(μ1, μ2) ∈ D(π) : (p, μ1) ∈ σ′(X/(q, μ2))}

It is not hard to see that Φ and Ψ are both monotonic.
We now use the model transformation functions Φ and Ψ to prove an extended

version of Theorem 1.

Theorem 2. Let p, q be CCS processes, (p ‖ q, π) ∈ C∗(p ‖ q). For a formula
ϕ ∈ HML∗

�,X and an environment σ, we have

(p ‖ q, π) �σ ϕ ⇔ ∀(μ1, μ2) ∈ D(π) : (p, μ1) �Φ(σ) ϕ/(q, μ2). (6)

Conversely, for an environment σ′,

(p ‖ q, π) �Ψ(σ′) ϕ ⇔ ∀(μ1, μ2) ∈ D(π) : (p, μ1) �σ′ ϕ/(q, μ2). (7)

We can now show that the functions Φ and Ψ are inverses of each other.

Lemma 2. Ψ ◦ Φ = idEX and Φ ◦ Ψ = idEX×C .

This means that Φ is a bijection between the collections of environments over
the variable spaces X and X × C, and Ψ is its inverse. The last theorem of this
section establishes soundness of the decompositional reasoning for HML∗

�,X by
showing that Φ and Ψ preserve models of D and D′, respectively.

Theorem 3. Let D be a declaration over X , and let D′ be its companion dec-
laration over X × C defined by (5). If σ is a model for D, then Φ(σ) is a model
for D′. Moreover, if σ′ is a model for D′, then Ψ(σ′) is a model for D.

www.manaraa.com

44 L. Aceto et al.

Theorem 3 allows us to use decompositional reasoning for HML∗
�,X . Assume, for

example, that we want to find the least model for a declaration D. We start by
constructing the declaration D′ defined by (5). Next, we find the least model
σ′min of D′ using standard fixed-point computations. (See, e.g., [4] for a textbook
presentation.) We claim that Ψ(σ′min) is the least model of the declaration D.
Indeed, let σ be any model of D. Then, by the above theorem, Φ(σ) is a model
of D′ and thus σ′min ⊆ Φ(σ) holds, where ⊆ is lifted pointwise to environments.
Then the monotonicity of Ψ and Lemma 2 ensure that Ψ(σ′min) ⊆ Ψ(Φ(σ)) = σ.
To conclude, note that Ψ(σ′min) is a model of D by the above theorem.

6 Extensions and Further Related Work

In this paper, we have developed techniques that allow us to apply decomposi-
tional reasoning for history-based computations over CCS and Hennessy-Milner
logic with past modalities. Moreover, we extended the decomposition theorem
to a recursive extension of that logic. The contribution of this paper can thus be
summarized as follows. For each modal formula ϕ (in the μ-calculus with past)
and each parallel computation π, in order to check whether (p ‖ q, π) �σ ϕ, it
is sufficient to check (p, μ1) �Φ(σ) ϕ/(q, μ2), where (μ1, μ2) is a decomposition
of π and ϕ/(q, μ2) is the quotient of ϕ with respect to the component (q, μ2).
(The implication holds in the other direction, as well; however, the application
of this theorem is expected in the aforementioned direction.) In the presentation
of the decomposition of computations that is at the heart of our approach, we
rely on some specific properties of CCS at the syntactic level, namely to detect
which rule of the parallel operator was applied. By tagging a transition with its
proof [11,15], or even just with the last rule used in the proof, we could eliminate
this restriction and extend our approach to other languages involving parallel
composition. Another possibility is to construct a rule format that guarantees the
properties we use at a more general level, inspired by the work of [18]. However,
all our results apply without change to CCS parallel composition over (possibly
infinite) synchronization trees.

In this work we have only considered contexts built using parallel composi-
tion. However, decompositionality results have been shown for the more general
setting of process contexts [31] and for rule formats [10,18]. In that work, one
considers, for example, a unary context C[·] (a process term with a hole) and a
process p with which to instantiate the context. A property of the instantiated
context C[p] can then be transformed into an equivalent property of p, where the
transformation depends on C. As the state space explosion of model-checking
problems is often due to the use of the parallel construct, we consider our ap-
proach a useful first step towards a full decomposition result for more general
contexts. In general, the decomposition of computations will be more complex
for general contexts.

The initial motivation for this work was the application of epistemic logic to
behavioural models, following the lines of [14]. We therefore plan to extend our

www.manaraa.com

Decompositional Reasoning about the History of Parallel Processes 45

results to logics that include epistemic operators, reasoning about the knowledge
of agents observing a running system. This work depends somewhat on the
results presented in Section 5.

As we already mentioned in the introduction, there is by now a substantial
body of work on temporal and modal logics with past operators. A small sample
is given by the papers [21,27,39]. Of particular relevance for our work in this
paper is the result in [27] to the effect that Hennessy-Milner logic with past
modalities can be translated into ordinary Hennessy-Milner logic. That result,
however, is only proved for the version of the logic without recursion and does
not directly yield a quotienting construction for the logics we consider in this
paper.

References

1. Aceto, L., Birgisson, A., Ingolfsdottir, A., Mousavi, M.R.: Decompositional rea-
soning about the history of parallel processes. Technical Report CSR-10-17,
TU/Eindhoven (2010)

2. Aceto, L., Bouyer, P., Burgueño, A., Larsen, K.G.: The power of reachability testing
for timed automata. TCS 300(1–3), 411–475 (2003)

3. Aceto, L., Ingólfsdóttir, A.: Testing Hennessy-Milner Logic with Recursion.
In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578, pp. 41–55. Springer,
Heidelberg (1999)

4. Aceto, L., Ingolfsdottir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification, Cambridge (2007)

5. Andersen, H.R.: Partial model checking (extended abstract). In: LICS 1995,
pp. 398–407. IEEE CS (1995)

6. Andersen, H.R., Stirling, C., Winskel, G.: A compositional proof system for the
modal mu-calculus. In: LICS 1994, pp. 144–153. IEEE CS (1994)

7. Arnold, A., Vincent, A., Walukiewicz, I.: Games for synthesis of controllers with
partial observation. TCS 303(1), 7–34 (2003)

8. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories
of Communicating Processes, Cambridge (2009)

9. Basu, S., Kumar, R.: Quotient-based control synthesis for non-deterministic plants
with mu-calculus specifications. In: IEEE Conference on Decision and Control 2006,
pp. 5463–5468. IEEE (2006)

10. Bloom, B., Fokkink, W., van Glabbeek, R.J.: Precongruence formats for decorated
trace semantics. ACM Trans. Comput. Log. 5(1), 26–78 (2004)

11. Boudol, G., Castellani, I.: A non-interleaving semantics for CCS based on proved
transitions. Fundamenta Informaticae 11(4), 433–452 (1988)

12. Cassez, F., Laroussinie, F.: Model-Checking for Hybrid Systems by Quotienting
and Constraints Solving. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 373–388. Springer, Heidelberg (2000)

13. Danos, V., Krivine, J.: Reversible Communicating Systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer,
Heidelberg (2004)

14. Dechesne, F., Mousavi, M., Orzan, S.: Operational and Epistemic Approaches
to Protocol Analysis: Bridging the Gap. In: Dershowitz, N., Voronkov, A. (eds.)
LPAR 2007. LNCS (LNAI), vol. 4790, pp. 226–241. Springer, Heidelberg (2007)

www.manaraa.com

46 L. Aceto et al.

15. Degano, P., Priami, C.: Proved Trees. In: Kuich, W. (ed.) ICALP 1992. LNCS,
vol. 623, pp. 629–640. Springer, Heidelberg (1992)

16. De Nicola, R., Montanari, U., Vaandrager, F.W.: Back and Forth Bisimulations. In:
Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 152–165.
Springer, Heidelberg (1990)

17. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation.
JACM 42(2), 458–487 (1995)

18. Fokkink, W., van Glabbeek, R.J., de Wind, P.: Compositionality of Hennessy-
Milner logic by structural operational semantics. TCS 354(3), 421–440 (2006)

19. Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Component verification with
automatically generated assumptions. Automated Software Engineering 12(3),
297–320 (2005)

20. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent
systems. Journal of Computer Security 13(3), 483–512 (2005)

21. Hennessy, M., Stirling, C.: The power of the future perfect in program logics. I &
C 67(1-3), 23–52 (1985)

22. Henzinger, T.A., Kupferman, O., Qadeer, S.: From pre-historic to post-modern
symbolic model checking. Formal Methods in System Design 23(3), 303–327 (2003)

23. Ingólfsdóttir, A., Godskesen, J.C., Zeeberg, M.: Fra Hennessy-Milner logik til CCS-
processer. Technical report, Aalborg Universitetscenter (1987)

24. Kozen, D.: Results on the propositional mu-calculus. TCS 27, 333–354 (1983)
25. Laroussinie, F., Larsen, K.G.: Compositional Model Checking of Real Time Sys-

tems. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 27–41.
Springer, Heidelberg (1995)

26. Laroussinie, F., Larsen, K.G.: CMC: A tool for compositional model-checking
of real-time systems. In: FORTE 1998. IFIP Conference Proceedings, vol. 135,
pp. 439–456. Kluwer (1998)

27. Laroussinie, F., Pinchinat, S., Schnoebelen, P.: Translations between modal logics
of reactive systems. TCS 140(1), 53–71 (1995)

28. Laroussinie, F., Schnoebelen, P.: Specification in CTL+past for verification in CTL.
I & C 156(1), 236–263 (2000)

29. Larsen, K.G.: Context-dependent bisimulation between processes. PhD thesis,
University of Edinburgh (1986)

30. Larsen, K.G.: Proof systems for satisfiability in Hennessy–Milner logic with recur-
sion. TCS 72(2–3), 265–288 (1990)

31. Larsen, K.G., Xinxin, L.: Compositionality through an operational semantics of
contexts. Journal of Logic and Computation 1(6), 761–795 (1991)

32. Lichtenstein, O., Pnueli, A., Zuck, L.D.: The Glory of the Past. In: Parikh, R. (ed.)
Logic of Programs 1985. LNCS, vol. 193, pp. 196–218. Springer, Heidelberg (1985)

33. Nielsen, M.: Reasoning about the Past. In: Brim, L., Gruska, J., Zlatuška, J. (eds.)
MFCS 1998. LNCS, vol. 1450, pp. 117–128. Springer, Heidelberg (1998)

34. Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. JLAP 73(1–2),
70–96 (2007)

35. Raclet, J.-B.: Residual for component specifications. Electr. Notes Theor. Comput.
Sci. 215, 93–110 (2008)

36. Simpson, A.K.: Sequent calculi for process verification: Hennessy-Milner logic for
an arbitrary GSOS. JLAP 60-61, 287–322 (2004)

37. Stirling, C.: A Complete Compositional Modal Proof System for a Subset of
CCS. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 475–486. Springer,
Heidelberg (1985)

www.manaraa.com

Decompositional Reasoning about the History of Parallel Processes 47

38. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics 5, 285–309 (1955)

39. Vardi, M.Y.: Reasoning about the Past with Two-Way Automata. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer,
Heidelberg (1998)

40. Winskel, G.: Synchronization trees. TCS 34, 33–82 (1984)
41. Winskel, G.: A complete proof system for SCCS with modal assertions. Funda-

menta Informaticae IX, 401–420 (1986)
42. Xie, G., Dang, Z.: Testing Systems of Concurrent Black-Boxes—an Automata-

Theoretic and Decompositional Approach. In: Grieskamp, W., Weise, C. (eds.)
FATES 2005. LNCS, vol. 3997, pp. 170–186. Springer, Heidelberg (2006)

www.manaraa.com

A Model-Based Development Approach

for Model Transformations

Shekoufeh Kolahdouz-Rahimi and Kevin Lano

Dept. of Informatics, King’s College London, Strand, London, UK

Abstract. Model transformations have become a key element of
model-driven software development, being used to transform platform-
independent models (PIMs) to platform-specific models (PSMs), to im-
prove model quality, to introduce design patterns and refactorings, and
to map models from one language to another. A large number of model
transformation notations and tools exist, however, there remain substan-
tial problems concerning the analysis and verification of model transfor-
mations. In particular, there is no systematic development process for
model transformations.

In this paper, we provide a unified semantic treatment of model trans-
formations, and show how correctness properties of model transforma-
tions can be defined. We define a systematic model-driven development
process for model transformations based on this semantics, and we
describe case studies using this process.

1 Introduction

Model transformations are mappings of one or more software engineering mod-
els (source models) into one or more target models. The models considered may
be graphically constructed using graphical languages such as the Unified Mod-
elling Language (UML) [18], or can be textual notations such as programming
languages or formal specification languages.

The research area of model transformations remains very active, and certain
fundamental issues have as yet only partially been solved:

Specification Issues. Semantically, model transformations can be considered
to be relations between (the sets of models of) languages, ie., in the binary
case, they identify for a pair (M1,M2) of models of two languages, if M1 is
related by the transformation to M2.

But for convenience transformations are usually defined by sets of transfor-
mation rules which relate specific elements of M1 to specific elements of M2.
This introduces problems of dependency and consistency between rules, and
the overall effect of the set of rules may be difficult to deduce from the rules
themselves, either for a human reader, or for analysis and verification tools [23].

These problems are akin to those of other software technologies, such
as rewrite-rule based systems and knowledge-based systems, which describe
global processes by collections of localised rules.

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 48–63, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

A Model-Based Development Approach for Model Transformations 49

Development Issues. At present, construction of model transformations is fo-
cussed upon the implementation of a transformation in a particular model
transformation language [6], the transformation is described only at a rel-
atively low level of abstraction, without a separate specification. The de-
velopment process may be ad-hoc, without systematic guidelines on how
to structure transformations. The plethora of different transformation lan-
guages creates problems of migration and reuse of transformations from one
language to another.

Ironically, the model transformation community has recreated the devel-
opment problems, for this specialised form of software, which model-driven
development (MDD) was intended to ameliorate: the inability to reuse and
migrate systems due to the lack of platform-independent specifications, and
an excessive implementation focus [7].

The solution which we propose to these problems is to adopt a general
model-driven software development approach, UML-RSDS (Reactive System De-
velopment Support) [14], for model transformation development. UML-RSDS
provides the necessary specification notations for model transformation defini-
tion, at different levels of abstraction, and provides support for verification and
the synthesis of executable code. UML-RSDS uses standardised UML notation
and concepts, so permitting reuse and communication of models.

We consider the following kinds of model transformation:Refinement transfor-
mations are used to refine a model towards an implementation. For example, PIM
to PSMtransformations in theModel-drivenArchitecture (MDA).Re-expressions
translate a model in one language into its ‘nearest equivalent’ in a different lan-
guage. This includes model migration. Transformations which perform some anal-
ysis upon the source model and construct analysis results, such as checking or
model comparison transformations, can be considered as abstractions. Quality
improvement transformations transform a model to improve its structure.

Within each category, further subcategories can be distinguished, for example
refactoring is a particular subcategory of quality improvement transformation.

Section 2 defines a general semantics for model transformations and defines
concepts of correctness for model transformations. Section 3 surveys techniques
for the definition of transformations. Section 4 describes the UML-RSDS lan-
guage and the elements of our model transformation development process using
UML-RSDS. Section 5 describes the application of the process to the specifica-
tion and design of transformation case studies. Finally in Section 7 we summarise
our recommendations for improving the development of model transformations.

2 Semantic Framework for Model Transformations

2.1 Metamodelling Framework

We will consider transformations between languages specified using the Meta-
Object Framework (MOF). Figure 1 shows the four-level metamodelling frame-
work of UML using MOF. At each level, a model or structure can be considered
to be an instance of a structure at the next higher level.

www.manaraa.com

50 S. Kolahdouz-Rahimi and K. Lano

M3
(MOF)

M2
(UML)

M1
(User model)

M0
(Run−time instances)

Class

Property Class

Person

name: String

p1

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

Fig. 1. UML metamodel levels

In discussing model transformation correctness, we will refer to the M2 level
as the language level (the models define the languages which the transformation
relates) and to the M1 level as the model level (the models which the transfor-
mation operates upon).

For each model M at levels M2 and M3, we can define (i) a logical language
LM that corresponds to M , and (ii) a logical theory ΓM in LM , which defines
the semantic meaning of M , including any internal constraints of M . If an M1
model is also a UML model, it can also be assigned such a language and theory.
LM and ΓM are defined using the axiomatic semantics for UML given in Chapter
6 of [16], based upon structured theories and theory morphisms in a real-time
temporal logic.
LM consists of type symbols for each type defined in M , including primitive

types such as integers, reals, booleans and strings which are normally included in
models, and each classifier defined in M . There are attribute symbols att(c : C) :
T for each property att of type T in the feature set of C . There are attributes C
to denote the instances of each classifier C (corresponding to C .allInstances() in
the UML object constraint language (OCL)), and action symbols op(c : C , p : P)
for each operation op(p : P) in the features of C [15]. Collection types and
operations on these and the primitive types are also included. The OCL logical
operators and , implies , forAll , exists are interpreted as ∧, ⇒, ∀, ∃, etc.
ΓM includes axioms expressing the multiplicities of association ends, the mu-

tual inverse property of opposite association ends, deletion propagation through
composite aggregations, the existence of generalisation relations, and the logical
semantics of any explicit constraints in M , including pre/post specifications of
operations.

www.manaraa.com

A Model-Based Development Approach for Model Transformations 51

For a sentence ϕ in LM , there is the usual notion of logical consequence:

ΓM � ϕ

means the sentence is provable from the theory of M , and so holds in M . �L is
used to emphasise that the deduction takes place within language L.

If M is at the M1 level and is an instance of a language L at the M2 level, then
it satisfies all the properties of ΓL, although these cannot be expressed within
LM itself. We use the notation M |= ϕ to express satisfaction of an LL sentence
ϕ in M .

For example, any particular UML class diagram satisfies the language-level
property that there are no cycles in the inheritance hierarchy.

2.2 Model Transformation Semantics

As discussed above, transformations can be regarded as relations between mod-
els. The models may be in the same or in different modelling languages. Let
L1 and L2 be the languages concerned. We assume these are defined as meta-
models using MOF. A transformation τ then describes which models M1 of L1

correspond to (transform to) which models M2 of L2.
Let ModelsL be the set of models which interpret the language (metamodel)

L and satisfy (|=) any logical properties defined for L. We may simply write
M : L instead of M : ModelsL.

A model transformation τ from language L1 to language L2 can therefore be
expressed as a relation

Relτ : ModelsL1 ↔ ModelsL2

Sequential composition τ ; σ of transformations corresponds to relational com-
position of their representing relations.

2.3 Model Transformation Correctness

The following notions of transformation correctness have been defined [24,3]:
Syntactic correctness, Definedness, Completeness and Semantic correctness. The
first three properties are termed Strong executability, Totality and Determinism
in [3].

In our semantics for transformations, we can precisely define these criteria as
follows for a model transformation τ from L1 to L2:

Syntactic Correctness. For each model which conforms to (is a model in the
language) L1, and to which the transformation can be applied, the trans-
formed model conforms to L2:

∀M1 : L1; M2 ·Relτ (M1,M2) ⇒ M2 : L2

Definedness. This means that the applicability condition of Relτ is true: its
domain is the complete collection of models of L1.

www.manaraa.com

52 S. Kolahdouz-Rahimi and K. Lano

Uniqueness. This means that Relτ is functional in the source to target
direction.

Completeness. The specification of τ is complete with respect to the require-
ments, if when a model M1 of L1 should be related to a model M2 of L2 by
the transformation, then Relτ (M1,M2) holds.

Semantic Correctness. 1. (Language-level correctness): each language-level
property ϕ : LL1 satisfied by source model M1 is also satisfied, under an
interpretation χ on language-level expressions, in M2:

∀M1 : L1; M2 : L2 · Relτ (M1,M2) ∧ M1 |= ϕ ⇒ M2 |= χ(ϕ)

This shows that L2 is at least as expressive as L1, and that users of M2

can continue to view it as a model of L1, because the data of M1 can
be expressed in terms of that of M2. In particular, no information about
M1 is lost by τ .

2. (Model-level correctness): each model-level property ϕ : LM1 of a source
model M1 is also true, under an interpretation ζ on model-level expres-
sions, in M2:

∀M1 : L1; M2 : L2 · Relτ (M1,M2) ∧ ΓM1 � ϕ ⇒ ΓM2 � ζ(ϕ)

for ϕ ∈ ΓM1 .
This means that internal constraints ofM1 remain valid in interpreted

form in M2, for example, that subclassing in a UML model is mapped to
subsetting of sets of table primary key values, in a transformation from
UML to relational databases [20].

Model-level semantic correctness should be expected for refinement, specialisa-
tion, enhancement and quality improvement transformations. For re-expression
transformations there may be cases where M1 properties cannot be expressed in
M2 (ζ will be a partial interpretation), but all expressible properties should be
preserved from M1 to M2.

If transformations τ andσ are semantically correct at aparticular level, so is their
composition τ ; σ, using the composition of the corresponding interpretations.

At the model level, the OCL constraints ϕ of a model should be transformed
to ζ(ϕ) or to a predicate which implies this. This will ensure model-level semantic
correctness in many cases, although if the types or classifiers of the source lan-
guage are changed by the transformation (such as by amalgamating subclasses
of a class), additional steps need to be taken.

Further correctness properties can also be considered concerning collections
of model transformations which may be used together (for example, individual
model transformation rules within a transformation specification):

No Conflicts. Two rules conflict if they can both be applied to the same
elements in a particular model, and their results are different.

Confluence. That where different orders of application of transformation rules
to a model are possible, the resulting model is the same regardless of the

www.manaraa.com

A Model-Based Development Approach for Model Transformations 53

order of applications. In particular, the result of an individual transformation
rule applied repeatedly to different elements within a model does not depend
on the order in which these applications occur.

One recommendation that could be made is that within each group of transfor-
mation rules which may be executed without ordering restrictions, that no rules
conflict with each other, and that there is confluence within the group. Such a
group could constitute a single phase in a transformation algorithm. The correct-
ness of a transformation could then be demonstrated from that of its individual
phases or rulesets.

A model transformation implementation is said to be change propagating if
changes Δs to the source model s can be used to compute a necessary change
Δt to the target model, without the need to re-execute the transformation on
the new source model s+Δs . Two change-propagating transformations compose
to form a change-propagating transformation.

3 Specification Techniques for Model Transformations

A large number of formalisms have been proposed for the definition of model
transformations: the pure relational approach of [2,1], graphical description lan-
guages such as graph grammars [5,22] or the visual notation of QVT-Relations
[19], hybrid approaches such as Epsilon [11] and implementation-oriented
languages such as Kermeta [10].

In each approach, model transformations are specified and implemented as
rules specific to particular kinds of elements in the source model(s) and individual
elements in the target model(s). The model-to-model relation is then derived
from some composition of these individual rules.

This raises the question of how it can be shown that the composition of the
rules achieves the intended global relation, and what semantics should be used
to carry out the composition. In the case of languages such as ATL [8] and QVT-
Relations, the order of invocations of rules may be only implicitly defined, and
may be indeterminate.

4 Transformation Specification in UML-RSDS

UML-RSDS is a UML-based specification language, consisting of UML class di-
agrams, state machines, activities, sequence diagrams, and a subset of OCL. It is
used as the specification language of an automated Model-Driven Development
approach, Constraint-Driven Development (CDD) [15], by which executable sys-
tems can be synthesised from high-level specifications.

The most abstract form of specification in UML-RSDS consists of class dia-
grams together with constraints, the constraints serve to define both the static
state and dynamic behaviour of the system, and executable code is synthesised
from such constraints using the principle that any operation op that changes the
state of the model must have an executable implementation which ensures that
all the model constraints remain true in the modified state.

www.manaraa.com

54 S. Kolahdouz-Rahimi and K. Lano

It is also possible to use a lower level of abstraction, and to explicitly specify
operations using pre and post-conditions in OCL, and define activities or state
machines to specify the order of execution of operations within a class, or of
individual steps of specific operations.

Both styles may be used to specify model transformations. The first style in-
herently supports bidirectional (invertible) and change-propagating model trans-
formations, the second only directly supports unidirectional mappings, but can
produce more efficient implementations of the transformation.

4.1 Development Process for Model Transformations

Our general recommended development process for model transformations is as
follows:

Requirements. The requirements of the transformation are defined, the source
and target metamodels are specified, including which constraints need to be
established or preserved by the transformation, and what assumptions can
be made about the input models. A use case diagram can be used to describe
the top-level capabilities of the system, and non-functional requirements can
be identified.

Abstract Specification. Constraints can be used to define the overall relation
Relτ between source and target models for each use case (transformation).
We will usually express the precondition of a transformation (considered as
a single operation) as a predicate Asm, and the postcondition as a predicate
Cons , both Asm and Cons may be expressed in the union of the languages
of the source and target models. Asm defines the domain of Relτ , and Cons
defines which pairs of models are in Relτ . Informal diagrams in the concrete
syntax of the source and target languages can be used to explain the key
aspects of this relation, as in the CGT model transformation approach [7].

It should be possible to show at this stage that Cons establishes the
required properties Ens of the result models:

Cons , ΓL1 �LL1∪L2
Ens

where L1 is the source language, L2 the target language.
Likewise, Cons should prove that Pres are preserved, via a suitable

interpretation χ from the source language to the target language:

Cons ,Pres , ΓL1 �LL1∪L2
χ(Pres)

Explicit Specification and Design. The transformation can be broken down
into phases, each with its own source and target language and specification.
Phases should be independent of each other, except that the assumptions of
a non-initial phase should be ensured by the preceeding phase(s).

For each phase, define transformation rules (as operations specified by
pre/postconditions), and an activity to specify the order of execution of the
rules. Recursion between rules should be avoided if possible. Again, informal

www.manaraa.com

A Model-Based Development Approach for Model Transformations 55

diagrams can supplement the formal definition of the rules. For each phase,
verification that the activity combination of the rules satisfies the overall
specification of the phase can be carried out. It can also be checked that the
rule operations are deterministic and well-defined, and that the activities are
confluent and terminating under the precondition of the phase. Finally, it
should be checked that the composition of the phases achieves the specified
relation Cons and required property preservation/establishment conditions
of the overall transformation:

ΓL1 �LL1∪L2
Asm ⇒ [activity]Cons

where activity is the design decomposition of the transformation into phases.
[stat]P is the weakest precondition of predicate P with respect to state-
ment/activity stat (Chapter 6 of [16]).

The relative independence of particular rules and phases will enhance the
possibilities for reuse of these in other transformations.

Implementation. Code can be generated in a particular transformation im-
plementation language, such as Java, ATL or Kermeta. Different phases can
be implemented in different languages.

The emphasis in this development approach is on simplicity and verifiability.
Even if fully formal verification is not attempted, the decomposition of a trans-
formation into phases and activities supports the systematic composition of local
pre/post specifications of individual rules to establish the specifications of phases
and then of the complete transformation. The specification of the transformation
can then be used (independently of the details of phases) to prove the required
preservation and establishment properties of the use case corresponding to the
transformation.

5 Case Studies

The first case study that we consider is a re-expression transformation from
trees to graphs. Figure 2 shows the source and target metamodels of this trans-
formation. We will carry out all reasoning in this example directly upon OCL
constraints, rather than upon the formal semantics of these constraints. Such
reasoning can be recast in a fully formal version.

The identity constraint in the metamodels means that tree nodes must have
unique names, and likewise for graph nodes.

5.1 Requirements

The requirements of the case study consist of the metamodels, and two use
cases, one to check the validity of the source model and the other to carry out
the mapping upon a valid model.

The checking transformation has no assumptions, and should return true if
the source model is valid (no duplicate names, and no undefined parent trees),
and false otherwise.

www.manaraa.com

56 S. Kolahdouz-Rahimi and K. Lano

Tree Node

Edge

name: String

source

*

target

*

*

parent

name: String
{frozen,

 identity}
{frozen,

 identity}

Fig. 2. Tree to graph transformation metamodels

The mapping transformation has as its assumption Asm these validity
conditions Asm1:

∀ t1, t2 : Tree · t1.name = t2.name implies t1 = t2
∀ t : Tree · t .parent : Tree

together with the emptiness of the target model (Asm2):

Node = {} and Edge = {}

The following Pres property of the tree metamodel is to be preserved: that there
are no non-trivial cycles in the parent relationship:

t : Tree and t �= t .parent implies t �∈ t .parent+

where r+ is the non-reflexive transitive closure of r . Trees may be their own
parent if they are the root node of a tree.

There are two properties of the graph metamodel which should be ensured:
Ens1 is the constraint that edges must always connect different nodes:

e : Edge implies e.source �= e.target

Ens2 states that edges are uniquely defined by their source and target, together:

e1 : Edge and e2 : Edge and
e1.source = e2.source and e1.target = e2.target implies e1 = e2

Pres is a predicate in OCL over the source metamodel (considered as a UML
class diagram), and Ens is a predicate in OCL over the target metamodel. Asm
may in general be a predicate over both metamodels (for example, to assert that
the target model is empty at the start of a mapping transformation).

5.2 Abstract Specification

We will consider the use case to map trees to graphs. The transformation relates
tree objects in the source model to node objects in the target model with the
same name, and defines that there is an edge object in the target model for each
non-trivial relationship from a tree node to its parent.

www.manaraa.com

A Model-Based Development Approach for Model Transformations 57

The formal specification Cons of the transformation as a single global re-
lation between the source and target languages can be split into five separate
constraints:

C1. “For each tree node in the source model there is a graph node in the target
model with the same name”:

t : Tree implies ∃n : Node · n.name = t .name

C2. “For each non-trivial parent relationship in the source model, there is an
edge representing the relationship in the target model”:

t : Tree and t .parent �= t implies
∃ e : Edge · e.source = Node[t .name] and e.target =

Node[t .parent .name]

The notation Node[x] refers to the node object with primary key (in this
case name) value equal to x , it is implemented in the UML-RSDS tools
by maintaining a map from the key values to nodes. In OCL it would be
expressed as

Node.allInstances()→select(n | n.name = x)→any()

C3. “For each graph node in the target model there is a tree node in the source
model with the same name”:

g : Node implies ∃ t : Tree · t .name = g.name

C4. “For each edge in the target model, there is a non-trivial parent relationship
in the source model, which the edge represents”:

e : Edge implies ∃ t : Tree · t .parent �= t and
t = Tree[e.source.name] and
t .parent = Tree[e.target .name]

C5. The same as Ens2.

C3 and C4 are duals of C1 and C2, defining a reverse direction, from graphs
to trees, of the transformation, so that it is (in principle) bidirectional. C1 and
C3 together with the metamodels ensure that there is a 1-1 mapping from trees
to nodes, which facilitates change propagation in both directions. Because Ens2
is not provable from C1 to C4, we have included it in Cons , so requiring that
the design ensures this property.

C4 together with the uniqueness of names, establishes Ens1, and C5
establishes Ens2.

For refinement and re-expression transformations in particular, it is important
that the transformation preserves semantic meaning. That is, the information

www.manaraa.com

58 S. Kolahdouz-Rahimi and K. Lano

of the source model is preserved in the target model, possibly under some inter-
pretation. In our example, a logical interpretation χ from trees to graphs can be
defined, in OCL notation, as follows.

Tree.allInstances() �−→ Node.allInstances()
name �−→ name
parent �−→ if Edge.allInstances()→select(e | e.source = self)→notEmpty()

then Edge.allInstances()→select(e | e.source = self)→any().target
else self

This is well-defined since all edges with the same source must also have the same
target. The parent relation of the source model is therefore recoverable from the
edges of the target model. The property Pres has interpretation χ(Pres) which
states that nodes in the graph which are not linked to themselves in the graph
are never reachable from themselves by following edges from source to target.

This is provable from C3 and C4 and from Pres in L1, since if there was such
a cycle in the graph, it must have been produced from a corresponding cycle of
trees, contradicting Pres .

5.3 Explicit Specification and Design

This example is small enough that a single phase is sufficient for its design,
however we can split the mapping transformation into two phases:

1. phase1: map all tree elements to corresponding nodes;
2. phase2: map parent links to corresponding edges.

These are composed as phase1; phase2 to achieve the overall mapping.
phase1 can be treated as a new transformation with its own specification and

design. Its global specification is C1 and C3, its assumption is Asm.
phase2 has the global specification C2 and C4 and C5, its assumption is C1

and C3 and Asm1 and Edge = {}.
In turn, a set of specific rules can be defined to carry out each phase, together

with an activity which defines the order of application of the rules within the
phase.

For phase1 the mapping from a particular tree to a new graph node could be
expressed by the operation:

mapTreeToNode(t : Tree)
post:

∃ n : Node · n.name = t .name

The activity for this phase is a simple unordered iteration over all tree elements:

for t : Tree do mapTreeToNode(t)

This iteration executes mapTreeToNode(t) exactly once for each t in Tree at the
start of the loop execution.

www.manaraa.com

A Model-Based Development Approach for Model Transformations 59

For phase2 the rule is:

mapTreeToEdge(t : Tree)
pre:

t .name ∈ Node.name and
t .parent .name ∈ Node.name

post:

t �= t .parent implies ∃ e : Edge ·
e.source = Node[t .name] and
e.target = Node[t .parent .name]

Node.name abbreviates Node.allInstances()→collect(name).
Note that the rules are very close in form to the constraints C1 and C3 of

Cons , indeed for specifications in conjunctive-implicative form as for Cons in
this example, the rules can be generated from the forward constraints in Cons .

The activity for this phase is:

for t : Tree do mapTreeToEdge(t)

The explicit unidirectional rules generally permit more efficient implementa-
tion than the purely constraint-based specifications. They can be related to
the requirements Cons by showing, using reasoning in the axiomatic semantics
(Chapter 6 of [16]) of UML, that they do establish the constraints:

t : Tree ⇒ [mapTreeToNode(t)](∃ n : Node · n.name = t .name)

and hence

[for t : Tree do mapTreeToNode(t)](∀ t : Tree · ∃ n : Node · n.name = t .name)

because the individual applications of mapTreeToNode(t) are independent and
non-interfering, so the iteration is confluent.

We can also reason that phase1 establishes C3 because nodes are only cre-
ated by the execution of mapTreeToNode(t), and hence each is derived from a
corresponding tree element. Therefore the design of this phase is correct wrt its
specification.

Similarly we can verify the correctness of the second phase.
A ruleset in UML-RSDS is a set of rules (operations), it is defined as a UML

class with a behaviour defined by an activity. This controls the allowed order of
application of the rules. In this example we can therefore have one ruleset for
each phase, each with a single operation.

By composing the two phases in sequence, we can also establish the overall
correctness of the transformation:

Asm ⇒ [phase1; phase2]Cons

This is the case because phase1 establishes the assumptions of phase2, and
phase2 does not invalidate the effects C1 and C3 achieved by phase1.

The syntactic correctness of individual phases can be formally proved by using
an automated translation from UML-RSDS to the B formal notation [13,17], and

www.manaraa.com

60 S. Kolahdouz-Rahimi and K. Lano

applying proof within B. The B module produced represents the union of the
theories of the source and target languages. It is linear in size with respect to
these languages.

Definedness can be checked by ensuring that sufficient conditions hold (eg,
that the precondition of each called operation is true at the point of call, and
that no undefined expression evaluations can occur) to ensure definedness of
each transformation activity. Loop termination for unbounded loops requires the
definition of a loop variant and proof that this integer expression is decreased in
value on each loop iteration and is bounded below.

The UML-RSDS tools check completeness of rules by checking that all data
features of an object are set in the operation which creates it. For example, in
the operation mapTreeToEdge, an error message would be given if there was no
assignment to the target of the new edge. In addition it is checked that in a
postcondition formed from conjunctions of E implies P implications, that the
disjunction of the E conditions is implied by the precondition.

There are rules to determine when unordered iterations are confluent, for
example, if they update disjoint sets of elements [17].

Determinacy of an operation is checked by ensuring that there are no disjunc-
tions or other indeterminate operators on the right-hand side of implications in
the postcondition. Consistency is checked by ensuring that in conjunctions of
E implies P implications, that the E conditions are pairwise disjoint.

5.4 Implementation

Using the UML-RSDS tools, executable Java code can be generated for the
transformation, from the explicit activities and rules, this code operates upon
Java representations of the source and target metamodels.

5.5 Other Case Studies

The process has also been applied to several larger case studies, including the
mapping of activities from UML 1.4 to UML 2.2, in the 2010 transformation
tool competition [21], and the mapping of UML class diagrams, including both
single and multiple inheritance, and association classes, to relational database
schemas.

An example of a constraint from the Cons specification of the migration case
study is the mapping of a simple state in UML 1.4 activities to AcceptEventAction
instances in UML 2.2:

s : SimpleState and s.outgoing.size = 1 and s.outgoing.trigger .size = 1 implies

∃n : AcceptEventAction · n.name = s.name and n.trigger = s.outgoing.trigger

Figure 3 shows the mapping of a signal-triggered transition from a UML
1.4 SimpleState to a semantically equivalent UML 2.2 diagram with an
AcceptEventAction to consume the triggering event.

www.manaraa.com

A Model-Based Development Approach for Model Transformations 61

e[G]

[G]

s : SimpleState and s.outgoing.size = 1 and s.outgoing.trigger.size = 1

n : AcceptEventAction and n.name = s.name and n.trigger = s.outgoing.trigger

n

 s

Fig. 3. Mapping of signal-triggered transitions

The transformation design consists of three phases:

1. phase1: establishes the correspondences between each kind of state vertex
and activity node.

2. phase2: establishes the correspondences of guards and transitions with opaque
expressions and activity edges, assuming the correspondences of states from
phase1.

3. phase3: establishes the correspondences of partitions and activity graphs
with activity partitions and activities, assuming the correspondences of states
from phase1 and transitions from phase2.

The mapping of simple states is implemented as an operation

toActivity()
post:

outgoing .size = 1 and outgoing .trigger .size = 1 implies
∃ n : AcceptEventAction · n.name = name and

n.trigger = outgoing .trigger

in SimpleState.

6 Related Work

The paper [6] introduces a language, transML, to support the development of
model transformations. This however introduces a set of novel notations for re-
quirements, specification and design. We consider that it is preferable to use stan-
dardised and familier notations where possible, particularly UML, with which
most model transformation developers can be assumed to be already familiar.

Other MDD languages and processes could also be used to systematically
develop model transformations using the development process described here,
for example, executable UML [9].

www.manaraa.com

62 S. Kolahdouz-Rahimi and K. Lano

7 Conclusions

We have defined a development process and specification technique for model
transformations, using UML-RSDS. Modularity is based upon the object-oriented
modularity of UML models (class diagrams and behaviour models). Model trans-
formation tools generally lack support for semantic analysis. UML-RSDS pro-
vides a completeness check on objects created by rules. Other semantic checks,
such as the detection of potentially unbounded recursion between rules, would
also be beneficial for developers. Proof that metamodel constraints are estab-
lished or preserved by transformations (syntactic and semantic correctness) is
important in maintaining the integrity and correctness of a system. By decom-
posing transformations into phases, compositional proof that the transformation
establishes a required global relationship between the source and target models
can be carried out.

Acknowledgement. The work presented here was carried out in the EPSRC
HoRTMoDA project at King’s College London.

References

1. Akehurst, D., Howells, W., McDonald-Maier, K.: Kent Model Transformation Lan-
guage. Model Transformations in Practice (2005)

2. Akehurst, D.H., Caskurlu, B.: A Relational Approach to Defining Transformations
in a Metamodel. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002.
LNCS, vol. 2460, pp. 243–258. Springer, Heidelberg (2002)

3. Cabot, J., Clariso, R., Guerra, E., De Lara, J.: Verification and Validation of
Declarative Model-to-Model Transformations Through Invariants. Journal of Sys-
tems and Software (2009) (preprint)

4. Cuadrado, J., Molina, J.: Modularisation of model transformations through a phas-
ing mechanism. Software Systems Modelling 8(3), 325–345 (2009)

5. Ehrig, H., Engels, G., Rozenberg, H.-J. (eds.): Handbook of Graph Grammars and
Computing by Graph Transformation, vol. 2. World Scientific Press (1999)

6. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F., dos Santos, O.M.: transML: A
Family of Languages to Model Model Transformations. In: Petriu, D.C., Rouquette,
N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 106–120. Springer,
Heidelberg (2010)

7. Grønmo, R., Møller-Pedersen, B., Olsen, G.K.: Comparison of Three Model Trans-
formation Languages. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA
2009. LNCS, vol. 5562, pp. 2–17. Springer, Heidelberg (2009)

8. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

9. Carter, K.: Executable UML (2010), http://www.kc.com/XUML

10. Kermeta (2010), http://www.kermeta.org

11. Kolovos, D., Paige, R., Polack, F.: The Epsilon Transformation Language. In:
Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063,
pp. 46–60. Springer, Heidelberg (2008)

http://www.kc.com/XUML
http://www.kermeta.org

www.manaraa.com

A Model-Based Development Approach for Model Transformations 63

12. Kurtev, I., Van den Berg, K., Joualt, F.: Rule-based modularisation in model trans-
formation languages illustrated with ATL. In: Proceedings 2006 ACM Symposium
on Applied Computing (SAC 2006), pp. 1202–1209. ACM Press (2006)

13. Lano, K.: The B Language and Method. Springer, Heidelberg (1996)
14. Lano, K.: Constraint-Driven Development. Information and Software Technol-

ogy 50, 406–423 (2008)
15. Lano, K.: A Compositional Semantics of UML-RSDS. SoSyM 8(1), 85–116 (2009)
16. Lano, K. (ed.): UML 2 Semantics and Applications. Wiley (2009)
17. Lano, K., Kolahdouz-Rahimi, S.: Specification and Verification of Model Trans-

formations using UML-RSDS. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS,
vol. 6396, pp. 199–214. Springer, Heidelberg (2010)

18. OMG, UML superstructure, version 2.1.1. OMG document formal/2007-02-03,
(2007)

19. OMG, Query/View/Transformation Specification, ptc/05-11-01, (2005)
20. OMG, Query/View/Transformation Specification, annex A (2010)
21. Rose, L., Kolovos, D., Paige, R., Polack, F.: Model Migration Case for TTC 2010,

Dept. of Computer Science, University of York (2010)
22. Schurr, A.: Specification of Graph Translators with Triple Graph Grammars. In:

Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.)WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995)

23. Stevens, P.: Bidirectional model transformations in QVT. SoSyM 9(1) (2010)
24. Varro, D., Pataricza, A.: Automated Formal Verification of Model Transformations.

In: CSDUML 2003 Workshop (2003)

www.manaraa.com

Analyzing Component-Based Systems
on the Basis of Architectural Constraints

Christian Lambertz and Mila Majster-Cederbaum

Department of Computer Science, University of Mannheim, Germany
lambertz@informatik.uni-mannheim.de

Abstract. Component-based development (CBD) is a promising approach to
master design complexity. In addition, the knowledge about the architecture of
a component system can help in establishing important system properties, which
in general is computationally hard because of the state space explosion problem.
Extending previous work, we here investigate the novel class of disjoint circular
wait free component systems and show how we can use the architectural infor-
mation to establish a condition for the important property of deadlock-freedom
in polynomial time. A running example is included. We use the framework of
interaction systems, but our result carries over to other CBD models.

1 Introduction

The design complexity of modern software systems is only reasonably controllable with
structured approaches such as component-based development (CBD) that separate the
concerns of software architecture from individual component behavior and that allow
for reusability of components. Thereby, the application of formal methods (FM) can
guarantee and foster the fault-free development of such systems and supports the soft-
ware engineer with reliable information about this process. For a successful marriage
of CBD and FM, a formal component model needs to be defined, i.e., the behavior
of the components and the cooperation by means of so-called ports needs to be speci-
fied, which then allows for verification of system properties. Various formalisms have
been used as such a model, e.g., process algebras [2, 10, 25, 26, 27], channel-based
methods [3, 4], interface theories [7, 15, 16, 19], Petri nets [1, 5, 14], and interaction sys-
tems [6, 11, 18]. Since all these models suffer from the well-known state space explo-
sion problem, a global state space analysis for property verification is often unfeasible,
and it has been shown that many important properties such as deadlock-freedom or live-
ness are PSPACE-complete in, e.g., interaction systems [23] or 1-safe Petri nets [13].

One way to master this complexity problem is to restrict the architecture of the sys-
tem, i.e., the way the components are allowed to cooperate, and exploit this information
to derive polynomial time checkable conditions that imply the validity of the property
in question. Here, we show how we can use the architectural information to establish
a condition for the property of deadlock-freedom. Note that deadlock-freedom is an
important property in itself, and in addition, the verification of safety properties can be
reduced to deadlock detection [17]. Unfortunately, all we can aim for with such an ap-
proach is to find conditions since, as we argue in a moment, our architectural restriction
does not affect the complexity of deadlock-freedom verification in general.

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 64–79, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

Analyzing Component-Based Systems on the Basis of Architectural Constraints 65

For all our considerations in this paper, we use interaction systems as introduced by
Gössler and Sifakis [18] as the formal component model. Note that our approach does
not rely on this model; our ideas carry over to other CBD models as well. In interac-
tion systems, data and I/O operations are completely abstracted away and every single
operation is called an action. Each component’s behavior is modeled as a labeled tran-
sition system (LTS), where the set of labels equals the set of actions and each action is
understood as a port of the associated component. Actions of different components are
then grouped into sets called interactions to model cooperation among the components.
Thereby, any action can only be executed if all other actions contained in an appropri-
ate interaction are also executable. The global behavior is then derived by executing
the interactions nondeterministically according to their executability. The multiway co-
operation, that interaction systems allow for, facilitates a very compact and convenient
modeling on a certain level of abstraction. Note that more complex glueing mechanisms
can be realized by means of special glue components.

In order to restrict the architecture as motivated above, we consider a novel archi-
tectural constraint called disjoint circular wait freedom that excludes certain waiting
situations among the components. Our restriction is based on the acyclicity of the un-
derlying cooperation structure, which is typically defined by means of a graph where the
nodes represent the components and edges exist between any cooperating components.
Similar requirements of acyclicity exist for many formalisms under various names, e.g.,
acyclic topologies [19], acyclic architectural types [10], tree networks [12], or tree-like
architectures [21]. Note that only restricting the architecture to be acyclic is in gen-
eral not sufficient to ensure the existence of efficient verification algorithms, e.g., it has
been shown that deciding deadlock-freedom of interaction systems with tree-like ar-
chitectures, which restrict the architecture in a strictly stronger way than we do in this
paper, is PSPACE-complete [24]. Nevertheless, the verification of many instances of
CBD models can be tackled with polynomial time checkable conditions that rely on an
architectural restriction and ensure the property validity. In the following, we consider
such a conditional approach.

Typically, one drawback of the definition of acyclic architectures is that all cooper-
ations must be binary—otherwise the induced architecture is cyclic, e.g., if three com-
ponents cooperate together each pair of them is connected in the topology of [12, 21].
Therefore, Majster-Cederbaum and Martens [22] improved their notion of a tree-like ar-
chitecture to also work with multiway cooperation in the setting of interaction systems.
They defined a special graph—called cooperation graph in the following—in which
nodes represent all sets of components that are able to cooperate and whose graph-
theoretical property of being a forest defines tree-like interaction systems in [22].

Due to this definition and the assumption of a deadlock in the system, the authors
were able to make observations regarding waiting situations between deadlocked com-
ponents and the corresponding nodes that represent these components in the cooperation
graph. Their central observation is that if a component i waits for a component j be-
cause of an interaction α which again waits for a component k because of an interaction
β then at least two components exist that participate in both α and β. This observation
can be checked for all pairs of components, and the authors introduced a notion called
“problematic states” to reason about the reachability of states satisfying the observation

www.manaraa.com

66 C. Lambertz and M. Majster-Cederbaum

in polynomial time. Thereby, this reachability analysis depends on a property called
“exclusive communication” which requires that no action is used for cooperation with
different sets of components. They also present a transformation technique that is able
to ensure this property for an arbitrary interaction system in polynomial time.

Here, we extend the approach of Majster-Cederbaum and Martens [22] in several
ways. Our contribution is threefold:

1. We define a novel architectural constraint that disallows circular waiting of three
or more components such that the reasons of the single waits are unrelated. As we
will see, this constraint is especially useful in systems with multiway cooperations
when, e.g., one component i cooperates with components j1, . . . , jn (individually
and all n + 1 together) but no jk cooperates with a jl without i (for k �= l). To the
best of our knowledge such a constraint has not been studied in a formal setting.

2. We show how to use this architectural information to establish an efficiently check-
able condition for deadlock-freedom of interaction systems. The class of systems
that satisfy our condition extends the class of systems studied in [10, 12, 19, 21, 22].

3. We improve the approach of [22] by avoiding a polynomial time preprocessing
step that ensures a property of interaction systems called “exclusive communica-
tion”, which is important for the technique presented by the authors. Thereby, this
preprocessing possibly enlarges the behavior of the components for the verifica-
tion process. We show that this step is completely unnecessary as the required in-
formation can already be extracted beforehand. We demonstrate the effect of this
avoidance with an evaluation for two example systems in Section 5.

As an illustration of our considerations, we present a running example in the next sec-
tion. Note that our architectural constraint of disjoint circular wait freedom can be found
in many settings in which multiway cooperations occur that are restricted in the follow-
ing way: Components modeling clients cooperate with a server component such that no
binary cooperations between two clients are allowed. Additionally, any set of clients can
cooperate with the server. Typically, such settings occur in many practical applications
such as, e.g., broadcasting, global commits, and barrier synchronization.

The paper is organized as follows: In Section 2 we introduce the definition of inter-
action systems, deadlock-freedom, and our architectural constraint. Next, we show how
this information can be used to establish a condition for deadlock-freedom (Section 3)
and how we can further refine this idea in case the first approach fails (Section 4). As
already mentioned, in Section 5 we evaluate our approach with respect to the approach
of [22]. Finally, we conclude the paper and take a look at related work in Section 6.

2 Modeling Interacting Components

We first define the setting of all our considerations: interaction systems as a model for
component-based system design. Afterwards, we directly introduce a running example
that supports each definition and theorem with a concrete application in the following.

Definition 1 (Interaction System). An interaction system is defined by a tuple Sys :=
(Comp, {Ai}i∈Comp , Int ,Beh). Here, Comp is a finite set of components, which are

www.manaraa.com

Analyzing Component-Based Systems on the Basis of Architectural Constraints 67

referred to as i ∈ Comp. The actions of each component i are given by the action set
Ai—where ai ∈ Ai denotes an action—and are assumed to be disjoint, i.e., ∀ i, j ∈
Comp : i �= j =⇒ Ai ∩ Aj = ∅. The union of all action sets is called the global
action set Act :=

⋃
i∈Comp Ai.

A nonempty finite set α ⊆ Act of actions is called an interaction, if it contains at
most one action of every component, i.e., |α ∩ Ai| ≤ 1 for all i ∈ Comp . For any
interaction α and component i we put i(α) := Ai ∩ α and say that i participates in α
if i(α) �= ∅. The interaction set Int is a set of interactions which covers all actions, i.e.,
we require that

⋃
α∈Int α = Act holds.

Finally, the behavior model Beh of Sys contains for every component i a labeled
transition system (LTS) [[i]] := (Si, Ai, { ai−→i}ai∈Ai , Ii) describing the local behavior
of i where Si is the local state space, action set Ai contains the labels, { ai−→i}ai∈Ai is a
family of transition relations with ai−→i ⊆ Si × Si, and Ii ⊆ Si is the set of local initial
states. Whenever (si, s

′
i) ∈ ai−→i we write si

ai−→i s′i instead. For a local state si ∈ Si

of a component i we put Int(si) := {α ∈ Int | ∃ ai ∈ Ai ∩ α ∃ s′i ∈ Si : si
ai−→i s′i}

and say for an interaction α ∈ Int(si) that i wants to perform α in si. Local state si is
called independent if ∃α ∈ Int(si) : |α| = 1, otherwise si is called dependent1.

We now introduce an interaction system that will serve as a running example throughout
the paper. Consider the interaction system SysDB depicted in Figure 1. The system
models a database server and a fixed number of clients that are allowed to read and
write to the database. In order to avoid inconsistencies if one of the clients wants to
write, the database provides a locking mechanism that ensures that read requests are
not answered once a client is granted writing access and starts to write. Additionally,
all clients are informed about the data change and a global commit among all clients
ensures the consistency with any local data. After this commit, the database performs
an internal backup step; however, an appropriate storage component is not part of the
example. Here, we will consider n clients with the property that client i with 1 ≤ i ≤ n
is able to write up to wi times in a row (because of local memory constraints), i.e.,
the client can decide how many times it wants to write to the database as long as this
number does not exceed wi. Thus, the database d allows for an arbitrary number of
write operations but at least one has to be performed if a client is granted write access.

We have Comp = {d, 1, . . . , n}, and the action sets and interactions are defined as
in Figure 1: Figure 1(a) depicts the behavior [[d]] of the database d and Figure 1(b) the
behavior [[i]] of client i with 1 ≤ i ≤ n. We omit unnecessary state information in the
figure, e.g., state s0

d of d is depicted as a circled 0. Note that the states s0
i of all clients

i and state s3
d are independent. Before we define the cooperation graph—Figure 1(c)

shows it for SysDB—we define the global behavior of an interaction system.

Definition 2 (Global Behavior). The global behavior of an interaction system Sys is a
LTS [[Sys]] := (S, Int , { α−→}α∈Int , I) where the set of global states S :=

∏
i∈Comp Si

is given by the product of the local state spaces, which we consider to be order indepen-
dent. Global states are denoted by tuples s := (s1, . . . , sn) with n = |Comp|, and the
set of global initial states is I :=

∏
i∈Comp Ii. The family of global transition relations

1 This state property is called “complete” respectively “incomplete” in the work of [22]. Origi-
nally, this notion was introduced by Gössler and Sifakis [18].

www.manaraa.com

68 C. Lambertz and M. Majster-Cederbaum

0 select
d

[[d]]:

1

gr
an
t d

se
lec
t d

2

updated

informd, updated

3

co
m
m
it d

backupd

(a) Behavior of component d

0

processi, read i
[[i]]:

1

wait i

commit i

2

re
qu
es
t i

wr
ite

i

w
ri
te

i

wi
+1

w
ri
te

i

(wi − 1) times writei

(b) Beh. of i with 1 ≤ i ≤ n

{d} {d, 1, 2, . . . , n}

{d, 1} {1}

{d, 2}
{2}..

.

{d, n} {n}

(c) Cooperation graph

Fig. 1. Inter. sys. SysDB with Int =
⋃

1≤i≤n

{{selectd, read i}, {grantd, request i}, {process i},
{updated,writei}, {informd,waiti}

}∪{{commitd, commit1, . . . , commitn}, {backupd}
}

{ α−→}α∈Int is defined canonically where for any α ∈ Int and any s, s′ ∈ S we have
s α−→ s′ iff ∀ i ∈ Comp : if i(α) = {ai} then si

ai−→i s′i and if i(α) = ∅ then si = s′i.

The global state space that is computed for the global behavior is typically very
large because of the well-known state space explosion problem, i.e., |∏i∈Comp Si| ∈
O(|Smax|n) with n = |Comp| and Smax being the largest local state space. Note that
the global behavior [[SysDB]] of our running example already contains more than one
hundred thousand reachable states and roughly ten times more transitions for n = 12
clients2 and each wi = i. Thus, even this simple example suffers from state space
explosion for relatively small parameters. But, as motivated in the introductory part, the
construction of the global state space can be avoided if the architectural information
of the components is exploited. For this exploitation, we need access to the partial
behavior of a subset of the set of components.

Definition 3 (Partial Behavior). Let Sys be an interaction system and C ⊆ Comp
a set of components. The partial behavior of Sys with respect to C is a LTS [[C]] :=
(SC , IntC , { αC−→C}αC∈IntC , IC) where SC :=

∏
i∈C Si, IC :=

∏
i∈C Ii, IntC :=

{α ∩ (
⋃

i∈C Ai) | α ∈ Int} \ {∅}, and { αC−→C}αC∈IntC is defined analogously to
the family of global transition relations (cf. Definition 2). For a state sC ∈ SC we put
Int(sC) := {α ∈ Int | ∃αC ∈ IntC ∃ s′C ∈ SC : αC ⊆ α ∧ sC

αC−→C s′C}. If sC is
reachable from an initial state in [[C]], we denote this by sC ∈ [[C]].

Before we define and exploit any architectural constraint on interaction systems, we
have to define our goal of deadlock-freedom more precisely.

Definition 4 (Deadlock). A deadlock in an interaction system Sys is a global state
s ∈ S such that no interaction is performable in s. If no such state is reachable from an
initial state in [[Sys]] we call Sys deadlock-free.

2 The exact numbers are 139277 states and 1784121 transitions. Note that for n ≥ 15 there are
more than one million reachable states and over 25 million transitions.

www.manaraa.com

Analyzing Component-Based Systems on the Basis of Architectural Constraints 69

As already mentioned in the introduction, a deadlock induces a circular waiting among
the involved components. Next, we formalize this information about deadlocks. Thereby
and in the following, we reasonably assume that the local behavior of every component
is “locally deadlock-free”, i.e., at least one outgoing transition is present in any local
state of the corresponding LTS.

Lemma 1 (Deadlock Properties). For every deadlock s in an interaction system Sys ,
there is a set D ⊆ Comp such that the components in D can be ordered in such a way
that each component is waiting for the next one in a circular way, i.e., each component
d ∈ D wants to perform an interaction αd in its local state sd of the deadlock (αd ∈
Int(sd)), but αd is not enabled in s because the next component is unable to perform it.

Note that for any deadlock, we can find a set D as in Lemma 1 that is minimal among
all suitable sets. In the following, we assume that D is such a minimal set.

In order to introduce architectural constraints on interaction systems, we define the
cooperation graph3 as an undirected graph with two types of nodes. One type represents
each component as a singleton. The other one models any (partial) cooperation situation
among the components, i.e., for any two interactions there is a node representing the set
of components participating in both of them. The edges between the nodes correspond
to containment among the sets of components, i.e., possible cooperation situations that
rely on each other. Note that Figure 1(c) depicts this graph for our running example.

Definition 5 (Cooperation Graph and Disjoint Circular Wait Freedom). Given an
interaction system Sys . For an interaction α ∈ Int , let compset(α) := {i ∈ Comp |
i(α) �= ∅} denote the set of components participating in α. The cooperation graph
G := (V, E) of Sys is defined by the set of nodes V := V1 ∪ V2 where V1 := {{i} |
i ∈ Comp} and V2 := {compset(α) ∩ compset(β) | α, β ∈ Int ∧ compset(α) ∩
compset(β) �= ∅} and the set of edges E := {{u, v} | u, v ∈ V ∧ u ⊂ v ∧ ∀w ∈
V : u ⊂ w =⇒ w �⊂ v}. If on any simple cycle in G at most one node v is an element
of V1, i.e., |v| = 1, then Sys is called disjoint circular wait free.

Note that other approaches, e.g., [12, 19], typically define the architecture based on the
set V1 of nodes where two nodes are adjacent if the corresponding components cooper-
ate. The acyclicity of the resulting graph then defines the acyclicity of the architecture.
However with such a definition, any cooperation of three or more components induces
a cycle in the corresponding graph, and thus disqualifies the system for analysis. Here,
we allow for the existence of certain cycles that can be analyzed efficiently.

Our definition of the cooperation graph can be motivated in the following way: For
the verification of deadlock-freedom, we have to consider any way the components are
able to cooperate. Lemma 1 shows that a deadlock induces a circular waiting among
some of the involved components. Since these components are also related in the co-
operation graph, the superimposition of the waiting and cooperation information will
allow us to exclude those waiting situations where the reason of each single wait is
completely independent from the other ones. Thereby, the nodes of the graph represent
all possible cooperation sets, i.e., any node whose size is greater than two indicates a

3 This graph is called “interaction graph” by Majster-Cederbaum and Martens [22].

www.manaraa.com

70 C. Lambertz and M. Majster-Cederbaum

possible (partial) cooperation. As we will see in the next section, the exclusion of the
above mentioned waiting situations then allows for the establishment of a condition
for deadlock-freedom of the whole system by an analysis of the partial behaviors of
systems of size two, which results in a polynomial time bound of the approach.

Note that we assume that the cooperation graph is connected in the following, oth-
erwise each connected component of the graph can be treated separately. Figure 1(c)
depicts the cooperation graph of our running example SysDB. Note that SysDB is dis-
joint circular wait free because on any simple cycle of SysDB’s cooperation graph at
most one node represents a component. Further note that the running example is not
tree-like in the sense of [22] because it contains a simple cycle.

3 Exploiting Disjoint Circular Wait Freedom

Before we exploit the disjoint circular wait freedom of interaction systems, we for-
malize the ideas mentioned at the end of the previous section. This lets us derive a
polynomial time checkable condition for deadlock-freedom of interaction systems. The
following definition of cooperation paths corresponds to the mentioned transfer of a
waiting caused by a deadlock to the cooperation graph.

Definition 6 (Cooperation Path). Let Sys be an interaction system and G its coop-
eration graph. A simple path in G is called cooperation path πα

i,j for components
i, j ∈ Comp and interaction α ∈ Int with {i, j} ⊆ compset(α) if it connects the
corresponding nodes {i}, {j}, and compset(α) in G, i.e., πα

i,j := (v0, . . . , vk) with
k ∈ N, v0 = {i}, vk = {j}, vk′ = compset(α) for a k′ ∈ N with 0 < k′ < k, and
∀ l ∈ N : 0 ≤ l < k =⇒ {vl, vl+1} ∈ E.

{1} {d} {2}

{d, 1}
α

{d, 2}

β

{d, 1, 2}
γ

α = {grantd, request1}
β = {updated,write2}
γ = {commitd, commit1, commit2}

πα
1,d = {1} — {d, 1} — {d}

πβ
d,2 = {d} — {d, 2} — {2}

πγ
2,1 = {2} — {d, 2} — {d, 1, 2} — {d, 1} — {1}

Fig. 2. Three cooperation paths of our running example SysDB with n = 2. Additionally, possible
“waiting for” situations are shown as dashed lines, e.g., {1} α��� {d} means component 1 waits
for component d because of interaction α. Observe that each dashed line corresponds to the
sequence of edges of a cooperation path, e.g., {1} α��� {d} corresponds to πα

1,d.

Figure 2 illustrates cooperation paths for the running example. Since we are inter-
ested in using the cooperation paths to derive information about disjoint circular wait
free interaction systems, we state three simple observations about cooperation paths
between cooperating components in the following lemma.

www.manaraa.com

Analyzing Component-Based Systems on the Basis of Architectural Constraints 71

Lemma 2 (Cooperation Path Properties). Let Sys be an interaction system and G its
cooperation graph. For all components i, j ∈ Comp and interactions α ∈ Int with
{i, j} ⊆ compset(α) exists a cooperation path πα

i,j with the following properties:

1. Every node on the path is a subset of the set of components participating in α, i.e.,
∀ v ∈ πα

i,j : v ⊆ compset(α).
2. Every node on the path except the ones that represent components i and j contain

at least two components, i.e., ∀ v ∈ πα
i,j : v �= {i} ∧ v �= {j} =⇒ |v| ≥ 2.

3. The cooperation path consists of at least three nodes, i.e., |πα
i,j | ≥ 3.

In the following, we only consider cooperation paths that have the properties of
Lemma 2. We will now use the information about deadlocks of Lemma 1 to conclude the
existence of a certain node in the cooperation graph. Intuitively, this node provides
the information that at least two components have to (partially) wait for each other if
the corresponding interaction system is disjoint circular wait free but not deadlock-free.

Lemma 3. Let Sys be an interaction system and G = (V, E) its cooperation graph.
Assume that Sys is disjoint circular wait free and not deadlock-free. There exist com-
ponents i, j, k ∈ Comp and interactions α, β ∈ Int with i �= j, j �= k, {i, j} ⊆
compset(α), {j, k} ⊆ compset(β), and α �= β such that two cooperation paths πα

i,j

and πβ
j,k exist that have a node in common that does not represent a component, i.e.,

∃ v ∈ V : v ∈ πα
i,j ∧ v ∈ πβ

j,k ∧ |v| ≥ 2.

Next, we combine our knowledge about cooperation paths from Lemma 2 and the exis-
tence of a common node in at least two such paths (if a deadlock exists) of Lemma 3 in
order to prove a condition that is checkable among two components without consider-
ing whole cooperation paths, i.e., in the theorem we do not need to access elements of
the cooperation graph.

Theorem 1. Let Sys be an interaction system. Assume that Sys is disjoint circular wait
free and contains a deadlock s. There exist components i, j ∈ Comp and interactions
α, β ∈ Int with i �= j, {i, j} ⊆ compset(α), {j} ⊆ compset(β), α ∈ Int(si),
α /∈ Int(sj), β ∈ Int(sj), and |compset(α) ∩ compset(β)| ≥ 2 (where si and sj are
the local states of the components i and j in the global state s).

Theorem 1 offers a sufficient condition to verify the deadlock-freedom of interaction
systems. To see this, consider the negation of the statement of the theorem, that we
formalize as the following corollary. We also simplify the statement such that we only
need to consider one interaction α instead of every pair of distinct interactions.

Corollary 1. Given a disjoint circular wait free interaction system Sys . For a compo-
nent i ∈ Comp and a state si ∈ Si, let coopset(si) :=

⋃
α∈Int(si)

compset(α) \ {i}
denote the set of components that i wants to cooperate with in si. If no two components
i, j ∈ Comp, interaction α ∈ Int , and local states si ∈ Si and sj ∈ Sj with i �= j,
{i, j} ⊆ compset(α), α ∈ Int(si), α /∈ Int(sj), and compset(α) ∩ coopset(sj) �= ∅
exist, then Sys is deadlock-free.

www.manaraa.com

72 C. Lambertz and M. Majster-Cederbaum

Observe that the statement of the corollary corresponds to the negation of the statement
of Theorem 1 with the following adjustment: Instead of requiring that there is an in-
teraction β ∈ Int(sj) with |compset(α) ∩ compset(β)| ≥ 2, we can simply check
whether compset(α) ∩ coopset(sj) �= ∅ holds, since this implies that there is such an
interaction β.

We use the information provided by Corollary 1 to define the notion of problematic
states as follows. As already mentioned, a similar definition can be found in [22].

Definition 7 (Problematic States). For component i ∈ Comp , dependent local state
si ∈ Si, interaction α ∈ Int(si), and component j ∈ compset(α) \ {i}, we define
PSj(si, α) := {sj ∈ Sj | α /∈ Int(sj) ∧ compset(α) ∩ coopset(sj) �= ∅ ∧
sj dependent ∧ ∀β ∈ Int((si, sj)) : compset(β) �= {i, j} ∧ (si, sj) ∈ [[{i, j}]]}.

Note that we incorporated two observations to refine these sets with respect to Corol-
lary 1: States are only problematic regarding deadlock-freedom to each other, if both
states are dependent—otherwise, they can execute a singleton interaction globally and
thus never are involved in a deadlock. Similarly, since we compute the partial behaviors
of systems of size two, if an interaction in which only components i and j participate
is enabled in a state combination, it is also globally enabled. The second observation
regards the reachability of state combinations: If the combination (si, sj) of two states
is not reachable in the partial behavior of the components i and j, it is clear that this
combination is not part of any reachable global state. With this definition, we are able
to state the following efficiently checkable result regarding deadlock-freedom.

Theorem 2. Let Sys be a disjoint circular wait free interaction system. Sys contains
no deadlock if for all components i ∈ Comp and dependent local states si ∈ Si holds⋃

α∈Int(si)

⋃
j∈compset(α)\{i}

PSj(si, α) = ∅

Note that computing the sets of problematic states can be done in polynomial time
since there are at most |Smax| × |Comp| × |Int | such sets and each of them requires a
reachability analysis that is bounded by O(|Smax|2).

We now compute the problematic states of our example system according to Defini-
tion 7. For state s2

d ∈ Sd and all components i, j ∈ Comp \ {d} with 1 ≤ i, j ≤ n and
i �= j and states s1

i ∈ Si we get (all other combinations are empty):

PSi(s
2
d, {updated,write i}) = {s1

i } PSi(s
2
d, {informd,waiti}) = {s1

i }
PSj(s

1
i , {commitd, . . . }) = {sk

j | 2 ≤ k ≤ wj + 1}

Note that these states are also intuitively problematic to each other, e.g., if the database
d is in state s2

d and wants to inform client i which is already in state s1
i , this is not

possible since i does not offer its wait action in this state and wants to cooperate with d.
Since not all sets of problematic states are empty, we cannot conclude the deadlock-

freedom of the example with Theorem 2. In the next section, we will further refine the
information provided by problematic states.

www.manaraa.com

Analyzing Component-Based Systems on the Basis of Architectural Constraints 73

4 Refinement: Problematic States Reachability

We use a similar observation as Majster-Cederbaum and Martens [22] to refine the
information provided by problematic states. We motivate this refinement with the help
of our running example.

Consider SysDB with n = 2 and the global state (s1
d, s

2
1, s

2
2). We want to exclude its

reachability by only considering partial behaviors of size two. In state s1
d, component

d wants to cooperate with client 1 and 2, i.e., coopset(s1
d) = {1, 2}—cf. Corollary 1

for the definition of coopset(·). Therefore, we take a look at [[{d, 1}]] and see that the
state (s1

d, s
2
1) is only reachable by performing interaction {grantd, request1} and analo-

gously in [[{d, 2}]] the state (s1
d, s

2
2) is only reachable by {grantd, request2}. Comparing

these two interactions, we see that they are not consistent, i.e., only one of them can be
used to enter either (s1

d, s
2
1, s

0
2) or (s1

d, s
0
1, s

2
2).

We will use this observation to exclude the reachability of problematic state combi-
nations. Similar to the notion of “backward search” of Majster-Cederbaum and Martens
[22], we first compute for each local state the set of states from which it can be reached
without cooperating with any of its cooperation partners. In the comparison of the inter-
actions which lead to a certain global state, these can be reached as intermediate steps
without affecting the reachability of a state combination in question. Note that as al-
ready mentioned in the introduction, we here adjust the techniques of [22] in order to
work without previously establishing the property of exclusive communication.

Definition 8 (Non-interfering Backward Reachable Set). We define the non-interfer-
ing backward reachable set (NBRS) of a state si of component i as the set of all states
from which si is reachable without using actions that are only used for cooperation with
components that i wants to cooperate with in si:

NBRS0(si) := {si}
NBRSl+1(si) :=

{
s′i ∈ Si | ∃ s′′i ∈ NBRSl(si) : s′i ∈ Pre(s′′i , {ai ∈ Ai |

∃α ∈ Int : ai ∈ α ∧ compset(α) ∩ coopset(si) = ∅})}
NBRS(si) :=

⋃
l∈N

NBRSl(si)

where Pre(si, A) := {s′i ∈ Si | ∃ a ∈ A : s′i
a−→i si} denotes the A-predecessors of a

state si ∈ Si for any subset A ⊆ Ai of component i’s actions.

Computing the NBRSs for our running example yields for all clients i and states si ∈
Si : NBRS(si) = {si} and for the states of the database: NBRS(s0

d) = {s0
d, s

3
d},

NBRS(s1
d) = {s1

d}, NBRS(s2
d) = {s2

d}, and NBRS(s3
d) = {s3

d, s
2
d, s

1
d, s

0
d} = Sd. Note

that the NBRS of state s3
d is d’s whole state space since in this state the component only

“cooperates” with itself. However, the NBRS of state s0
d shows that for reachability

concerns also combinations involving s3
d have to be considered, since component d can

transit from this state to s0
d without affecting any cooperation partners.

Next, we formalize the set of actions relevant for such comparisons as the entry
combinations of state combinations.

www.manaraa.com

74 C. Lambertz and M. Majster-Cederbaum

Definition 9 (Entry Combinations). We define the entry combinations (EC) of a state
si of component i and a state sj of component j as the combinations of actions ai

of i and interactions α such that ai is used for cooperation with components that i
wants to cooperate with in si and ai is also used in α to enter a reachable state in the
partial behavior of i and j from which the state (si, sj) can be reached without using
actions that are only used for cooperation with components that i respectively j wants
to cooperate with in si respectively sj:

EC(si, sj) :=
{
({ai}, α) ∈ 2Ai × Int | ai ∈ α

∧ ∃β ∈ Int : ai ∈ β ∧ compset(β) ∩ coopset(si) �= ∅
∧ ∃ (s′i, s

′
j) ∈ NBRS(si) × NBRS(sj) ∃ (s′′i , s′′j) ∈ [[{i, j}]] :

(s′′i , s′′j) ∈ Pre((s′i, s
′
j), {α ∩ (Ai ∪ Aj)})

}
Note that we use the singleton {ai} in the definition of the pairs of actions ai and
interactions α as entry combinations in order to identify ai with the corresponding
action of component i in the interaction α via the function i(α). This makes the use of
entry combinations in the following theorem more readable.

We are not interested in computing these combinations for all states, i.e., only the
ones that are problematic to each other are of interest. Thereby, we exploit the following
observation similar to Majster-Cederbaum and Martens [22]: A state si ∈ Si of any
component i ∈ Comp is only part of a global deadlock if all interactions α ∈ Int(si)
that si wants to perform are blocked by the corresponding cooperation partners, i.e., for
all such α there is a component j ∈ compset(α) \ {i} that is in a state sj ∈ Sj where
α in not performable.

Thus, since we want to determine which entry combinations of i may lead to a state
where α is not performable, we take the union of all entry combinations of problematic
states of components participating in α. Since this argument may only result in a global
deadlock if it holds for all interactions that si wants to perform, i.e., if there is an entry
combination that is part of the union as above for all α ∈ Int(si), we compare these
sets: In order to determine whether such a combination exists, we compute the inter-
section of all these unions, which corresponds to the interaction comparison mentioned
before Definition 8.

The following theorem formalizes this observation. Thereby, the first condition en-
sures that we actually are able to perform the described comparison, because if a state
can be reached from any initial state without using actions that are only needed for co-
operation with its cooperation partners, we cannot rely on any entry information of this
state. Therefore, we simply demand that no such state is reachable or otherwise that no
corresponding problematic state of another component is also reachable in this way.

Theorem 3. Let Sys be a disjoint circular wait free interaction system. If the following
two conditions hold then Sys contains no deadlock:

1. For all components i ∈ Comp and dependent local states si ∈ Si holds that
NBRS(si)∩ Ii = ∅ or there is an interaction α ∈ Int(si) such that for all compo-
nents j ∈ compset(α) \ {i} holds

(⋃
sj∈PSj(si,α)

NBRS(sj)
) ∩ Ij = ∅.

www.manaraa.com

Analyzing Component-Based Systems on the Basis of Architectural Constraints 75

2. For all interactions α ∈ Int with |compset(α)| ≥ 2 exists a component i ∈
compset(α) such that for all dependent local states si ∈ Si holds

(i(α), α) /∈
⋂

β∈Int(si)

⋃
j∈compset(β)\{i}

⋃
sj∈PSj(si,β)

EC(si, sj)

Note that computing the entry combinations of problematic states can be done in poly-
nomial time since there are at most |Smax|× |Comp|× |Int | such problematic state sets
and only O(|Comp|2) reachability analyses bounded by O(|Smax|2) are performed.

For enhanced readability and for a state si ∈ Si and an interaction β ∈ Int , we
use the abbreviation PEC(si, β) :=

⋃
j∈compset(β)\{i}

⋃
sj∈PSj(si,β)

EC(si, sj) for the
union of entry combinations and CUTS(si) :=

⋂
β∈Int(si)

PEC(si, β) for the corre-
sponding intersections in the following (cf. Theorem 3).

We continue with our running example where we get (all other sets are empty):

PEC(s2
d, {updated,writei}) = PEC(s2

d, {informd,waiti})
=
⋃

1≤j≤n{({informd}, {informd,waitj}), ({updated}, {updated,writej})}
PEC(s1

i , {commitd, . . . })={({waiti}, {informd,waiti}), ({write i}, {updated, writei})}
Again, these combinations correspond to the intuition, e.g., the entry combinations
EC(s2

d, s
1
i) of state s2

d of d and state s1
i of a client i are that d informs the client or

updates its database.
This results in the following intersections: For all i ∈ Comp \ {d} and s1

i ∈ Si we
get (all other sets are empty):

CUTS(s1
i) = {({wait i}, {informd,wait i}), ({write i}, {updated, writei})}

Now, we see that for all sd ∈ Sd the set CUTS(sd) is empty. Since component d
participates in every interaction α ∈ Int with |compset(α)| ≥ 2, and (d(α), α) /∈
CUTS(sd) for all sd, the second part of Theorem 3 holds. Note that also the first con-
dition holds, since for all dependent local states si of all components i ∈ Comp holds
NBRS(si) ∩ Ii = ∅—except for state s0

d but there the corresponding problematic state
sets are empty. Thus, we can conclude that SysDB is deadlock-free.

5 Evaluation of the Exclusive Communication Factor

As already mentioned in the introduction, our approach of deadlock verification is based
on an earlier approach by Majster-Cederbaum and Martens [22]. In their work, the prop-
erty of “exclusive communication” is needed in order to establish the deadlock-freedom
of interaction systems. Roughly speaking, exclusive communication requires that no ac-
tion is used for cooperation with different sets of components. Here, we showed how
we can drop this requirement by comparing more information in our entry combina-
tions than Majster-Cederbaum and Martens [22] in their corresponding entry informa-
tion called “problematic actions”. In order to verify systems without exclusive commu-
nication, Majster-Cederbaum and Martens [22] provide a construction technique that
transforms an arbitrary interaction system into one with exclusive communication in
polynomial time. Thereby, their construction introduces fresh actions for any action that
is used non-exclusively and multiplies the affected transitions in any LTSs.

www.manaraa.com

76 C. Lambertz and M. Majster-Cederbaum

However, since we showed that this transformation is not necessary, we are interested
in the time savings that our approach allows for. In order to evaluate the savings, we used
a prototype implementation for interaction systems that is able to verify the conditions
of Theorem 3. Figure 3(a) depicts the verification time for the running example system
SysDB for various numbers of clients. It shows a slight performance increase if we do
not transform the system into one with exclusive communication beforehand. Note that
the database d is the only component that needs adjustment.

0 10 20

0

2

4

6

8

·103

Clients

Ti
m

e
(m

s)

Normal
Exclusive

(a) Verif. time of SysDB

{c}

{b1}

{c, b1}

{a11}

{b
1
, a

1 1
}

{am1 }

{b
1 , a

m1 }

. . .

{bn}

{c, bn}

. . .

{amn }

{b
n , a

mn }

{a1n}
{b

n
, a

1 n
}

. . .

(b) Coop. graph of SysBanks

5
10

5

100

5

10

·104

Banks ATMs

Ti
m

e
(m

s)

Normal

Exclusive

(c) Verification time of SysBanks

Fig. 3. Verification time of SysDB (wi = i for client i) and SysBanks and its cooperation graph

In order to better illustrate the exclusive communication factor, we also evaluated the
interaction system SysBanks that has the cooperation graph depicted in Figure 3(b). This
system was introduced by Baumeister et al. [7] and modeled as an interaction system
by Majster-Cederbaum and Martens [21] for an earlier version of their approach that
does not support multiway cooperation—note that only binary cooperations occur in
the cooperation graph. The system consists of a clearing company c that cooperates
with n banks bi which again cooperate with m ATMs aj

i . The nested structure of the
cooperation graph already indicates that a lot of cooperations are not exclusive, i.e., the
transformation of the system requires adjustments of many more components than of
SysDB. Figure 3(c) depicts our evaluation for different numbers of banks and ATMs.
Here, the transformation factor is better visible since the verification of the systems
with exclusive communication requires much more time. Note that the transformation
time is not included in the measured verification times.

This lets us conclude that also from a performance point of view, the exclusive com-
munication factor should not be underestimated and it is beneficial to have a technique
such as our entry combinations to completely circumvent this requirement.

6 Conclusion and Related Work

In this paper, we showed how component-based systems with multiway cooperation can
be analyzed on the basis of an architectural constraint. The presented analysis focuses
on the property of deadlock-freedom of interaction systems and provides a polynomial
time checkable condition that ensures deadlock-freedom by exploiting a restriction of
the architecture called disjoint circular wait freedom. Roughly speaking, this architec-
tural constraint disallows any circular waiting situations among the components such
that the reason of one waiting is independent from any other one.

www.manaraa.com

Analyzing Component-Based Systems on the Basis of Architectural Constraints 77

We want to point out that we only derived a condition for deadlock-freedom. For
instance, our approach fails in situations where a set of components blocks each other
but other components not involved in this blocking are able to proceed globally. But, it
should be clear that by only considering sets of components of size two—which yields
a very efficient approach—not all such situations can be covered.

On the other hand, if our approach fails then the information provided by the entry
combinations gives a hint of which components are involved in a possible deadlock.
With this information, a software engineer can take a closer look at this potentially
small set of components and either resolve the reason manually or encapsulate this
set in a new composite component that has equivalent behavior, is verified deadlock-
free with another technique, and now causes no problems in the remaining system.
Such a hierarchical approach comparable to ideas of Hennicker et al. [19] is currently
studied in the setting of interaction systems. Considering other properties, e.g., progress
of components, or weaker architectural constraints are also left for future work.

As mentioned in the introduction, acyclic architectures are also exploited in the work
of Bernardo et al. [10] and Hennicker et al. [19]. Thereby, both approaches rely on be-
havioral equivalences among certain key components in the architecture, i.e., if the
behavior of such a key component is not influenced by the cooperation with the remain-
ing components (which is checked with weak bisimilarity), the question of deadlock-
freedom is answerable by only looking at the behavior of the key component. Apart
from the fact that such equivalences can be found in many systems—we also consid-
ered a comparable approach for interaction systems [20]—however also numerous ex-
amples with no behavioral equivalences at all exist modeling realistic scenarios that are
still verifiable with our approach, e.g., such an example can be found in [22].

The work of Brookes and Roscoe [12] considers tree-like networks in the context of
CSP restricted to binary communication. For such networks, the authors additionally
require that cooperating components (or processes in this case) have at most one co-
operation partner in every state. This directly allows to imply the deadlock-freedom of
the whole network by the analysis of all cooperating pairs of components. However, for
networks without this additional property, a tedious case analysis is required to exclude
certain waitings among the components.

For interaction systems, also several approaches for proving deadlock-freedom ex-
ist, e.g., Bensalem et al. [9] in the context of BIP [6] (for which interaction systems
are a theoretical model), that also exploit the compositional structure of the system.
Their approach is based on finding invariants for the components, which must be pro-
vided for each property, and for the interactions, which are computed automatically.
Unfortunately, according to Bensalem et al. [8], for this computation “there is a risk of
explosion, if exhaustiveness of solutions is necessary in the analysis process.” Thus, this
approach is not guaranteed to be polynomial in the number and size of the components
which is an important property of our approach.

References

[1] van der Aalst, W.M.P., van Hee, K.M., van der Toorn, R.A.: Component-based soft-
ware architectures: a framework based on inheritance of behavior. Science of Computer
Programming 42(2-3), 129–171 (2002)

www.manaraa.com

78 C. Lambertz and M. Majster-Cederbaum

[2] Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Transactions on
Software Engineering and Methodology 6(3), 213–249 (1997)

[3] Arbab, F.: Reo: a channel-based coordination model for component composition. Mathe-
matical Structures in Computer Science 14(3), 329–366 (2004)

[4] Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: A Uniform Framework for Mod-
eling and Verifying Components and Connectors. In: Field, J., Vasconcelos, V.T. (eds.)
COORDINATION 2009. LNCS, vol. 5521, pp. 247–267. Springer, Heidelberg (2009)

[5] Barboni, E., Bastide, R.: Software components: a formal semantics based on coloured Petri
nets. In: Proceedings of the 2nd International Workshop on Formal Aspects of Compo-
nent Software (FACS 2005). Electronic Notes in Theoretical Computer Science, vol. 160,
pp. 57–73. Elsevier (2006)

[6] Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP.
In: Proceedings of the 4th International Conference on Software Engineering and Formal
Methods (SEFM 2006), pp. 3–12. IEEE Press (2006)

[7] Baumeister, H., Hacklinger, F., Hennicker, R., Knapp, A., Wirsing, M.: A component model
for architectural programming. In: Proceedings of the 2nd International Workshop on For-
mal Aspects of Component Software (FACS 2005). Electronic Notes in Theoretical Com-
puter Science, vol. 160, pp. 75–96. Elsevier (2006)

[8] Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.-H.: Compositional Verification for
Component-Based Systems and Application. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I.,
Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 64–79. Springer, Heidelberg
(2008)

[9] Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: D-finder: A Tool for Compositional
Deadlock Detection and Verification. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 614–619. Springer, Heidelberg (2009)

[10] Bernardo, M., Ciancarini, P., Donatiello, L.: Architecting families of software systems with
process algebras. ACM Transactions on Software Engineering and Methodology 11(4),
386–426 (2002)

[11] Bozga, M.D., Sfyrla, V., Sifakis, J.: Modeling synchronous systems in BIP. In: Proceedings
of the 7th International Conference on Embedded software (EMSOFT 2009), pp. 77–86.
ACM Press (2009)

[12] Brookes, S.D., Roscoe, A.W.: Deadlock analysis in networks of communicating processes.
Distributed Computing 4(4), 209–230 (1991)

[13] Cheng, A., Esparza, J., Palsberg, J.: Complexity Results for 1-Safe Nets. In: Shyamasundar,
R.K. (ed.) FSTTCS 1993. LNCS, vol. 761, pp. 326–337. Springer, Heidelberg (1993)

[14] da Silva, L.D., Perkusich, A.: Composition of software artifacts modelled using colored
Petri nets. Science of Computer Programming 56(1-2), 171–189 (2005)

[15] de Alfaro, L., Henzinger, T.: Interface Theories for Component-Based Design. In:
Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 148–165.
Springer, Heidelberg (2001)

[16] Doyen, L., Henzinger, T.A., Jobstmann, B., Petrov, T.: Interface theories with compo-
nent reuse. In: Proceedings of the 8th International Conference on Embedded Software
(EMSOFT 2008), pp. 79–88. ACM Press (2008)

[17] Godefroid, P., Wolper, P.: Using Partial Orders for the Efficient Verification of Dead-
lock Freedom and Safety Properties. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS,
vol. 575, pp. 332–342. Springer, Heidelberg (1992)

[18] Gößler, G., Sifakis, J.: Composition for Component-Based Modeling. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2002. LNCS, vol. 2852,
pp. 443–466. Springer, Heidelberg (2003)

www.manaraa.com

Analyzing Component-Based Systems on the Basis of Architectural Constraints 79

[19] Hennicker, R., Janisch, S., Knapp, A.: On the observable behaviour of composite compo-
nents. In: Proceedings of the 5th International Workshop on Formal Aspects of Compo-
nent Software (FACS 2008). Electronic Notes in Theoretical Computer Science, vol. 260,
pp. 125–153. Elsevier (2010)

[20] Lambertz, C.: Exploiting architectural constraints and branching bisimulation equivalences
in component-based systems. In: Proceedings of the Doctoral Symposium of the 2nd World
Congress on Formal Methods (FM 2009-DS), no. 0915 in Eindhoven University of Tech-
nology Technical Report, Eindhoven, pp. 1–7 (2009)

[21] Majster-Cederbaum, M., Martens, M.: Compositional analysis of deadlock-freedom for
tree-like component architectures. In: Proceedings of the 8th International Conference on
Embedded Software (EMSOFT 2008), pp. 199–206. ACM Press (2008)

[22] Majster-Cederbaum, M., Martens, M.: Using architectural constraints for deadlock-freedom
of component systems with multiway cooperation. In: Proceedings of the 3rd International
Symposium on Theoretical Aspects of Software Engineering (TASE 2009), pp. 225–232.
IEEE Press (2009)

[23] Majster-Cederbaum, M., Minnameier, C.: Everything is PSPACE-Complete in Interaction
Systems. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS,
vol. 5160, pp. 216–227. Springer, Heidelberg (2008)

[24] Majster-Cederbaum, M., Semmelrock, N.: Reachability in tree-like component systems is
PSPACE-complete. In: Proceedings of the 6th International Workshop on Formal Aspects
of Component Software (FACS 2009). Electronic Notes in Theoretical Computer Science,
vol. 263, pp. 197–210. Elsevier (2010)

[25] Montesi, F., Sangiorgi, D.: A Model of Evolvable Components. In: Wirsing, M., Hofmann,
M., Rauschmayer, A. (eds.) TGC 2010, LNCS, vol. 6084, pp. 153–171. Springer, Heidel-
berg (2010)

[26] Ramos, R., Sampaio, A., Mota, A.: Systematic Development of Trustworthy Component
Systems. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 140–156.
Springer, Heidelberg (2009)

[27] Plášil, F., Višňovský, S.: Behavior protocols for software components. IEEE Transactions
on Software Engineering 28(11), 1056–1076 (2002)

www.manaraa.com

Constructive Development

of Probabilistic Programs
∗

Hassan Haghighi and Mohammad Mahdi Javanmard

Faculty of Electrical and Computer Engineering, Shahid Beheshti University,
Tehran, Iran

h haghighi@sbu.ac.ir,
ma.javanmard@Mail.sbu.ac.ir

Abstract. Probabilistic techniques in computer programs are becoming
more and more widely used. Therefore, there is a big interest in methods
for formal specification, verification, and development of probabilistic
programs. In this paper, we present a constructive framework to develop
probabilistic programs formally. To achieve this goal, we first introduce
a Z-based formalism that assists us to specify probabilistic programs
simply. This formalism is mainly based on a new notion of Z operation
schemas, called probabilistic schemas, and a new set of schema calculus
operations that can be applied on probabilistic schemas as well as ordi-
nary operation schemas. We show the resulting formalism can be used to
specify any discrete-time Markov chain. We also reason how one can de-
rive functional probabilistic programs from correctness proofs of formal
specifications written in the new formalism. In this way, a completely
formal solution to develop probabilistic programs will be proposed.

Keywords: formal program development, probabilistic specification,
functional probabilistic program, CZ set theory, type theory.

1 Introduction

Probabilistic techniques in computer programs are becoming more and more
widely used; examples are in random algorithms to increase efficiency, in con-
current systems for symmetry breaking, and in hybrid systems when the low-level
hardware might be represented by probabilistic programs that model quantita-
tive unreliability [11]. Therefore, there has been a renewed interest in methods
for formal specification, verification, and development of probabilistic programs.

Methods for modelling probabilistic programs go back to the early work in
[7] introducing probabilistic predicate transformers as a framework for reasoning
about imperative probabilistic programs. From that time on, a wide variety of
logics have been developed as possible bases for verifying probabilistic systems.
A survey of this work can be found in [10].

∗
This research has been done using research credits of Shahid Beheshti University,
G.C. under Contract Number: 600/177.

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 80–95, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

Constructive Development of Probabilistic Programs 81

In [11] and [13], Morgan et al. introduced probabilistic nondeterminism into
Dijkstra’s GCL (Guarded Command Language) and thus provided a means with
which probabilistic programs can be rigorously developed and verified. Although
the semantics has been designed to work at the level of program code, it has an
in-built notion of program refinement which encourages a prover to move be-
tween various levels of abstraction. Unlike publications of Morgan et al. handling
probabilistic choice in imperative settings, there are several studies considering
probabilistic choice in functional languages; for example, see [2,15,16].

As far as we know, much of the work in the literature, such as the above men-
tioned work, has focused on the verification of probabilistic programs; however,
besides a considerable trend in verifying probabilistic programs, there is a big
interest in the formal specification and development of such programs. In this
paper, we introduce a constructive framework allowing us to write probabilis-
tic specifications formally and then drive functional probabilistic programs from
correctness proofs of these specifications.

In this framework, we use a Z-based formalism to write specifications of prob-
abilistic programs. Then, we translate the resulting probabilistic specifications
into their counterparts in Z itself. Of course, to interpret the obtained specifica-
tions in Z, we use an existing, constructive set theory, called CZ set theory [12],
instead of the classical set theory Z. We choose CZ since it has an interpretation
[12] in Martin-Löf ’s theory of types [9]; this enables us to translate our Z-style
specification of a probabilistic program into its counterpart in Martin-Löf’s the-
ory of types and then drive a functional probabilistic program from a correctness
proof of the resulting type theoretical specification.

The main contribution of the current paper is to introduce the Z-based for-
malism that will be used in the mentioned constructive framework. We interpret
this formalism in the conventional Z and then show the given interpretation
will constructively lead to functional programs which preserve the initially spec-
ified probabilistic behavior. To build the new formalism, we first augment the
Z notation with a new notion of operation schemas, called probabilistic schema,
intended to specify probabilistic operations. Also, since the schema calculus op-
erations of Z do not work on probabilistic schemas anymore, we define a new set
of operators for the schema calculus operations negation, conjunction, disjunc-
tion, existential quantifier, universal quantifier, and sequential composition which
properly work on probabilistic schemas as well as ordinary operation schemas.

The paper is organized in the following way. In section 2, we give a brief
overview of the CZ set theory and its interpretation in Martin-Löf’s theory of
types. We assume that the reader has some familiarity with Z [17] and construc-
tive type theory [9,14]. In section 3, we begin to introduce our formalism by
defining the notion of probabilistic schemas and showing how they can be used
to model probabilistic operations. We also give an interpretation of probabilis-
tic schemas in conventional Z. Since the proposed interpretation of probabilistic
schemas is not sufficient for the purpose of program construction, in section 4
we give a new interpretation of probabilistic schemas that constructively yield
functional programs implementing the initially specified probabilistic behavior.

www.manaraa.com

82 H. Haghighi and M.M. Javanmard

In section 5, we introduce a new set of schema calculus operations into the
resulting Z-based formalism. We then show how one can apply the resulting
formalism to specify Markov chains which themselves are widely used to model
stochastic processes with the Markov property and discrete (finite or countable)
state space [8]. Of course, since usually a Markov chain would be defined for a
discrete set of times, we will concentrate on discrete-time Markov chains. The
last section is devoted to the conclusion and directions for future work.

2 Preliminaries

To employ both the facilities of Z as a specification medium and the abilities
of constructive theories in program development, in [12], the CZ set theory has
been introduced which provides constructive interpretations for the specification
constructs of the Z notation. In this section, we give a brief description of the
CZ set theory and its interpretation in Martin-Löf’s theory of types.

2.1 CZ Set Theory

All proof rules of the classical set theory ZF (Zermelo-Fraenkel) can be used in
CZ except classical negation since this rule is derived from the axiom of excluded
middle. The axioms of CZ shadow those of the classical theory; indeed, most ax-
ioms remain intact. However, three axioms including separation, foundation, and
power set have been modified to satisfy constructive scruples. Also, modifying
the power set axiom yields a new axiom concerning the cartesian product set
constructor. To indicate the constructive nature of CZ, we give the modified
version of the power set axiom here. Other axioms of CZ can be found in [12].

decidable power set : ∀x · ∃ z · ∀ y · y ∈ z ⇔ y � x
In the above axiom, the relation y � x indicates that y is a decidable subset
of x. y � x iff y ⊆ x and ∀u ∈ x · u ∈ y ∨ ¬(u ∈ y). In the Z (ZF without
the axiom of replacement [12]) set theory, the power set is not restricted: any
kind of subset is permitted, not just the decidable ones. It is the most important
difference between Z and CZ set theories. CZ only permits subsets which can
be constructed in the sense that we can determine their membership relative to
their superset. Intuitively, the decidable subsets can be identified with decision
procedures which test for membership.

The CZ set theory can be considered as a constructive interpretation of the Z
language. Specially, replacing instances of the power set by decidable ones pro-
vides a way for determining whether specifications specify decidable problems. In
[12], it has been shown that the CZ set theory is enough for the purposes of pro-
gram specification in the style of Z. In other words, the common set theoretical
constructions employed in Z can be interpreted using CZ.

2.2 Interpretation of CZ in Martin-Löf ’s Theory of Types

In [12], a model ν =< V, ∈̇, =̇ > of CZ in Martin-Löf’s theory of types has
been built in which each set is associated with a pair consisting of a base type
together with a family of types, i.e., its elements. In the model ν, V ∼=Wx ∈ U.x,

www.manaraa.com

Constructive Development of Probabilistic Programs 83

where U is the universe whose elements are themselves types, andW is the type
constructor for recursive data types [14]. To complete the description of the
model ν, we need to define two binary relations =̇ and ∈̇:
α =̇β ∼= (Πx ∈ α− · α̃ x ∈̇β)⊗ (Πx ∈ β− · β x̃ ∈̇α)
α ∈̇β ∼= Σx ∈ β− · β x̃ =̇α

In the above definition, the equality between sets is explained according to the
extensional equality in set theories, stated by the extensionality axiom. In [12],
the type theoretical interpretations of the empty set and the set of natural num-
bers as two basic sets of CZ have been also given using the model ν. Also, a
mapping function, called ξ, has been defined which assigns elements of V to
well-formed and atomic formulas of CZ as follows:

[Ω]ξ = Ω
[x = y]ξ = ξ(x) =̇ ξ(y)
[x ∈ y]ξ = ξ(x) ∈̇ ξ(y)
[φ ∧ ψ]ξ = [φ]ξ ⊗ [ψ]ξ
[φ ∨ ψ]ξ = [φ]ξ ⊕ [ψ]ξ
[φ⇒ ψ]ξ = [φ]ξ ⇒ [ψ]ξ
[∀x ∈ y · φ]ξ = Πα ∈ (ξ(y))− · [φ]ξ[(ξ(y))̃ α/x]
[∃x ∈ y · φ]ξ = Σα ∈ (ξ(y))− · [φ]ξ[(ξ(y))̃ α/x]

The translation given in [12] is not still sufficient to transform a Z specification
into a type theoretical one: we need to interpret schemas, as a distinctive feature
of the Z notation, in type theory. In [3], we extended the work of [12] to handle
Z schemas. Here, we only mention our solution for operation schemas. Suppose
that an operation schema has the following general form:

Op Schema ∼= [x1 ∈ A1; ...; xm ∈ Am; y1 ∈ B1; ...; yn ∈ Bn | φ],
where xi(i : 1..m) are input or before state variables, yj(j : 1..n) are output or
after state variables, and φ denotes the pre- and postconditions of the operation
being specified. Now we extend the function ξ to translate Op Schema into an
element of V :

[Op Schema]ξ = (Πα1 ∈ (ξ(A1))
−, ..., αm ∈ (ξ(Am))−·

Σβ1 ∈ (ξ(B1))
−, ..., βn ∈ (ξ(Bn))

− · [φ]ξ)[(ξ(Ai))̃αi/xi][(ξ(Bj))̃βj/yj]

Now, we can use the function ξ to translate any Z specification into a type in
type theory and then extract a program (a term in type theory) which meets
the initial specification (more precisely, meets its representation in type theory).

3 Specifying Probabilistic Operations

In this section, we begin to introduce a Z-based formalism to specify probabilistic
programs formally. To achieve this goal, we first define the notion of probabilistic
schema by which one can simply model probabilistic operations.

Definition 3.1. The general form of probabilistic schemas is as follows:

P Schema ∼= [x1 ∈ A1; ...; xm ∈ Am; y1 ∈ B1; ...; yn ∈ Bn |
φ ∧ (p1 : φ1; ...; pl : φl)],

www.manaraa.com

84 H. Haghighi and M.M. Javanmard

where xi(i : 1..m) are input or before state variables, and yj(j : 1..n) are output
or after state variables. Some part of the schema predicate, shown as φ, specifies
those functionalities of the operation that are non-probabilistic; it specially in-
cludes the preconditions of the operation being specified. The remainder of the
predicate is separated into l predicates φ1, ..., φl; pk ∈ R(k : 1..l) are (constant)
probabilities and by the notation pk : φk, we want to say that the predicate
φk holds with probability pk. In other words, the relationship between the vari-
ables of P Schema is stated by φk with probability pk. For a given probabilistic
schema, we assume that p1+ ...+pl = 1 and for each k : 1..l, pk ≥ 0. Notice that
in the predicate part of P Schema, l may be equal to 0, i.e., ordinary operation
schemas are considered as special cases of probabilistic schemas. "
In the next example, we use the notion of probabilistic schema to specify a simple
probabilistic operation.

Example 3.2. Suppose that the state of the weather tomorrow depends on only
weather status today and not on past weather conditions. For example, suppose
that if today is rainy in a specific area, tomorrow is rainy too with probability 0.5,
dry with probability 0.4, and finally snowy with probability 0.1. By the following
probabilistic schema, we specify the weather forecast for tomorrow provided that
today is rainy. In this schema, x? and y! are the weather status for today and
tomorrow, respectively. Also, suppose that we use values 1, 2 and 3 to specify
dry, rainy and snowy statuses, respectively.

P WF ∼= [x?, y! ∈ N | x? = 2 ∧ (0.4 : y! = 1; 0.5 : y! = 2; 0.1 : y! = 3)] "
The next definition introduces a function []P that maps probabilistic schemas
into ordinary operation schemas of Z. We will show later that this interpretation
of probabilistic schemas is not enough for the purpose of constructive program
development. Thus, in section 4, we change this interpretation to provide a con-
structive way to extract probabilistic programs from their Z-like specifications.

Definition 3.3. Recall P Schema, given in definition 3.1 as the general form
of probabilistic schemas. If for all real numbers p1, ..., pl, the maximum number
of digits to the right of the decimal point is d, then we have:

if P Schema is an ordinary operation schema (i.e., when l = 0),
then [P Schema]P = P Schema;
otherwise, [P Schema]P ∼= [x1 ∈ A1; ...; xm ∈ Am; y1 ∈ B1; ...; yn ∈ Bn |
φ∧(∃ p ∈ N ·((0 ≤ p < p1 ∗10d∧φ1)∨(p1 ∗10d ≤ p < (p1+p2)∗10d∧φ2)∨ ...∨
((p1 + ...+ pl−1) ∗ 10d ≤ p < (p1 + ...+ pl) ∗ 10d ∧ φl)))] "

[]P behaves as an identity function when applied to an ordinary operation
schema, i.e., when l = 0; otherwise, an auxiliary variable p ∈ N is introduced
into the predicate part helping us to implement the probabilistic choice between l
predicates φ1, ..., φl. The variable p ranges nondeterministically from 0 to 10d−1,
and the length of each allowable interval of its values determines how many times
(of 10d times) a predicate φk(k : 1..l) holds (or in fact describes the relationship
between the schema variables). More precisely, in pk ∗ 10d cases per 10d times,

www.manaraa.com

Constructive Development of Probabilistic Programs 85

the predicate φk(k : 1..l) determines the behavior of the final program. In the
next example, we apply the above defined interpretation to the probabilistic
schema P WF , given in example 3.2. We then use the interpretation of CZ in
type theory to extract a functional program from the resulting specification.

Example 3.4.We first use the function []P to transform P WF into an ordinary
operation schema of Z as follows:

[P WF]P ∼= [x?, y! ∈ N | x? = 2 ∧ (∃ p ∈ N · ((0 ≤ p < 4 ∧ y! = 1)
∨(4 ≤ p < 9 ∧ y! = 2) ∨ (9 ≤ p < 10 ∧ y! = 3)))]

By the above schema, p nondeterministically takes one of 10 values 0, 1, ..., 9. For
four (i.e., in 4 cases per 10) possible values of p (i.e., 0, 1, 2, and 3), it has been
specified that the weather is dry tomorrow. For other five (i.e., in 5 cases per 10)
possible values of p (i.e., 4, 5, 6, 7, and 8), it has been described that the weather
is rainy tomorrow. Finally, for the remaining (i.e., in 1 case per 10) possible value
of p (i.e., 9), it has been indicated that the weather is snowy tomorrow. Thus, it
seems that if one makes a uniform choice to select one of the values 0, 1, ..., 9 for
p, s/he will be provided with a correct implementation of P WF . Nevertheless,
we now show that the schema [P WF]P cannot constructively lead to a program
which implements the probabilistic behavior specified by P WF .

To extract a program from a correctness proof of [P WF]P , we first use the
function ξ (see subsection 2.2) to interpret the operation schema [P WF]P into
type theory. The resulting type theoretical specification is as follows:

Πα ∈ N ·Σβ ∈ N · (α=̇2⊗
(Σδ ∈ N · ((0≤̇δ<̇4⊗ β=̇1)⊕ (4≤̇δ<̇9⊗ β=̇2)⊕ (9≤̇δ<̇10⊗ β=̇3)))),

where α, β, and δ correspond to the variables x?, y!, and p existing in [P WF]P ,
respectively. Also, b ≤̇ a and b <̇ a are abbreviations for Σρ ∈ N · b + ρ=̇a and
Σρ ∈ N1 ·b+ρ=̇a, respectively. Now we can use the inference rules of type theory
to prove the correctness of the above specification (or in other words, construct
an object of its corresponding type). This object can be viewed as a program
satisfying the schema P WF . A part of such a proof is shown in Fig. 1. At the
end of the proof, the following functional program has been obtained:

prog = λα.(1, q),

where q is an intermediate proof object in the proof tree (see Fig. 1). For each
valuation of α ∈ N, the program prog always provides the value 1 for β, provided
that α = 2. In this way, prog cannot implement the probabilistic behavior speci-
fied by P WF : according to prog, the weather will be absolutely dry tomorrow,
provided that it is rainy today. Notice that if we select another path in the proof
tree (i.e., if we prove the correctness of (4≤̇δ<̇9 ⊗ β=̇2) or (9≤̇δ<̇10 ⊗ β=̇3),
rather than (0≤̇δ<̇4 ⊗ β=̇1)), we will again obtain a program that cannot im-
plement the probabilistic behavior specified by P WF . This problem is due to
the fact that in the proof tree, we can replace each of the variables β and δ by
only one of their possible values. This occurs when we use the introduction rule
for dependent sum (Σi); see two circled Σi in Fig. 1. As it can be seen in the
proof tree, this finally results in single value 0 for δ and single value 1 for β. "

www.manaraa.com

86 H. Haghighi and M.M. Javanmard

Fig. 1. Program extraction from the probabilistic schema P WF

As it was shown in example 3.4, using the function []P to interpret the prob-
abilistic schema P WF and then proving the correctness of the resulting spec-
ification did not constructively lead to a probabilistic program being enable to
implement the probabilistic behavior initially specified by P WF . We can in-
vestigate this problem in the general case by applying functions []P and ξ to the
schema P Schema, the general form of probabilistic schemas, in turn:

[[P Schema]P]ξ = Πα1 ∈ (ξ(A1))
−, ..., αm ∈ (ξ(Am))−·

Σβ1 ∈ (ξ(B1))
−, ..., βn ∈ (ξ(Bn))

−·
([φ ∧ (∃ p ∈ N · ((0 ≤ p < p1 ∗ 10d ∧ φ1) ∨ ...∨
((p1 + ...+ pl−1) ∗ 10d ≤ p < (p1 + ...+ pl) ∗ 10d ∧ φl)))]ξ)
[(ξ(Ai))̃αi/xi][(ξ(Bj))̃βj/yj],

where [[P Schema]P]ξ is the type theoretical equivalent of [P Schema]P . Using
the conventions

A′
i = (ξ(Ai))

− (i : 1..m), B′
j = (ξ(Bj))

− (j : 1..n), and

φ′ = ([φ ∧ (∃ p ∈ N · ((0 ≤ p < p1 ∗ 10d ∧ φ1) ∨ ...∨
((p1 + ...+ pl−1) ∗ 10d ≤ p < (p1 + ...+ pl) ∗ 10d ∧ φl)))]ξ)
[(ξ(Ai))̃αi/xi][(ξ(Bj))̃βj/yj],

[[P Schema]P]ξ is equal to the following type in type theory:
Πα1 ∈ A′

1, ..., αm ∈ A′
m ·Σβ1 ∈ B′

1, ..., βn ∈ B′
n · φ′

We can now derive a program from a correctness proof of the above type the-
oretical specification. An initial part of such a proof is shown in Fig. 2. The
extracted program is as follows:

prog = λ(α1, ..., αm) · ((v1, ..., vn), q),
For each valuation of α1 ∈ A′

1, ..., αm ∈ A′
m, this program always produces

the single n-ary (v1, ..., vn). In this way, the probabilistic behavior specified by
P Schema cannot be implemented by prog. The origin of this problem can be

www.manaraa.com

Constructive Development of Probabilistic Programs 87

i

prog (1 A 1, …, m A m.

1 B 1,…, n B n.)

i
t (1 B 1, …, n B n.)

Hyp

1 A 1, …, m A m

v1 B 1, …, vn B n q ([v1/ 1]…[vn/ n])

prog = (1, …, m) t

t = ((v1, …, vn), q)

Fig. 2. Program extraction from the probabilistic schema P Schema

realized considering the proof tree, specially where we used the introduction
rule for dependent sum (Σi) (see the circled Σi in Fig. 2): according to the
definition of Σi, we could replace the n-ary (β1, ..., βn) by only one of its possible
values. Although the problem originates from the rules of type theory, in the next
section, we change the given interpretation of probabilistic schemas such that
without the need to modify the proof rules of type theory, we will be able to
construct functional programs which preserve the specified probabilistic choice.

4 A New Interpretation of Probabilistic Schemas

We change the current interpretation of probabilistic schemas such that it ex-
plicitly models all possible values of the variable p and also all possible values
of the after state and output variables of P Schema, allowed according to the
predicate part of this schema.

In this way, the process of proving correctness is forced to construct a pro-
gram that involves all possible values of p and also all possible values of the
after state and output variables; such a program will be able to implement the
probabilistic behavior, initially specified by the probabilistic choice between l
predicates φ1, ..., φl. This approach is similar to what we presented in [4] and [5]
to specify nondeterminism explicitly in Z. The next definition introduces a new
function []NP that interprets probabilistic schemas according to the new idea.

Definition 4.1. Recall P Schema, given in definition 3.1 as the general form
of probabilistic schemas. If for all real numbers p1, ..., pl, the maximum number
of digits to the right of the decimal point is d, we have:

if P Schema is an ordinary operation schema, [P Schema]NP = P Schema;
otherwise, [P Schema]NP ∼= [x1 ∈ A1; ...; xm ∈ Am;
pvar ∈ seq(B1 × ...×Bn × N) |
∀(y1, ..., yn, p) ∈ (B1 × ...×Bn × N) · (y1, ..., yn, p) ∈ pvar ⇔ ψ],

where
ψ ≡ φ ∧ ((0 ≤ p < p1 ∗ 10d ∧ φ1) ∨ (p1 ∗ 10d ≤ p < (p1 + p2) ∗ 10d ∧ φ2) ∨ ...∨
((p1 + ...+ pl−1) ∗ 10d ≤ p < (p1 + ...+ pl) ∗ 10d ∧ φl))

Like []P , the function []NP behaves as an identity function when applied to
an ordinary operation schema; otherwise, it promotes the combination of the

www.manaraa.com

88 H. Haghighi and M.M. Javanmard

after state and output variables and an auxiliary variable p ∈ N to a sequence
pvar of all possible combinations of these variables that satisfy the predicates
of the schema. We have combined all of the above mentioned variables using the
cartesian product of their types in order to preserve the relationship between
them after the interpretation. The next theorem shows the recent interpretation
of probabilistic schemas constructively leads to programs which can implement
the probabilistic behavior initially specified by probabilistic schemas.

Theorem 4.2. Assume that for every predicate φk(k : 1..l) existing in the
predicate part of P Schema, each combination of values of before state and input
variables with one and only one combination of values of after state and output
variables satisfies φk. A program extracted from the correctness proof of the
type theoretical counterpart of [P Schema]NP can implement the probabilistic
behavior specified by P Schema.

Proof. Based on the predicate part of [P Schema]NP , a program satisfies
[P Schema]NP iff when applied to a combination of input values, it produces
a sequence consisting of all allowable values of y1, ..., yn, p and not anything
else. Therefore, any formal program development method that is sound (such
as the constructive method of extracting programs from correctness proofs of
type theoretical counterparts of Z specifications; see the soundness proof in [12])
absolutely extracts a program from [P Schema]NP that for each combination of
input values, produces a sequence consisting of all possible values of y1, ..., yn, p
and not anything else. On the other hand, by the assumption of the theorem, the
resulting sequence includes 10d elements from which pk ∗ 10d (k : 1..l) elements
implement the behavior specified by φk. Thus, if we make a uniform choice over
the elements of this sequence, we will be provided with a correct implementation
of the probabilistic behavior, initially specified by P Schema. "
In the next example, we apply the function []NP to the probabilistic schema
P WF , given in example 3.2.

Example 4.3. We use the function []NP to translate the probabilistic schema
P WF , given in example 3.2, into an ordinary operation schema of Z:

[P WF]NP ∼= [x? ∈ N; pvar ∈ seq(N× N) |
∀(y!, p) ∈ (N× N) · (y!, p) ∈ pvar ⇔
(x? = 2∧ ((0 ≤ p < 4∧y! = 1)∨ (4 ≤ p < 9∧y! = 2)∨ (9 ≤ p < 10∧y! = 3)))]

If we apply the function ξ (see subsection 2.2) to the above resulting schema,
the following type theoretical specification is obtained:

Πα ∈ N ·Σβ ∈ List1 (N⊗ N) ·Π(τ, δ) ∈ (N⊗ N) · (τ, δ)∈̇β ⇔
(α=̇2⊗ ((0≤̇δ<̇4⊗ τ=̇1)⊕ (4≤̇δ<̇9⊗ τ=̇2)⊕ (9≤̇δ<̇10⊗ τ=̇3))),

where α, β, τ , and δ correspond to the variables x?, pvar, y!, and p existing in
[P WF]NP , respectively. Due to the space limitation, we do not give the cor-
rectness proof of the above type theoretical specification here. Nevertheless, such

1 In [12], it has been shown that seqX of CZ is equivalent to List(X) of type theory.

www.manaraa.com

Constructive Development of Probabilistic Programs 89

a proof will result in a functional program that produces a sequence consisting
of all allowable values of τ and δ, provided that α = 2. More precisely, this
program produces the sequence

< (1, 0), (1, 1), (1, 2), (1, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (3, 9)>

Selecting any of the first four elements of the above sequence results in τ = 1
which means that the weather will be dry tomorrow. Similarly, selecting any of
the five elements (2,4),(2,5), (2,6), (2,7) and (2,8) yields τ = 2 which means that
the weather will be rainy tomorrow. Finally, selecting the element (3,9) results
in τ = 3 which means that the weather will be snowy tomorrow. Now, it is
enough to have a programming construct in the final functional language which
uniformly chooses between the elements existing in the above sequence.

Fortunately, there is considerable work to model probabilistic choice in func-
tional languages and λ-calculus (for example, see [2,15,16]). In most of this work,
a simple notation like P1⊕pP2 is introduced to model probabilistic choice. Based
on this construct, two expressions P1 and P2 are occurred with probabilities 1−p
and p, respectively. Now, having this probabilistic construct, we define a λ func-
tion, called UC, which receives a sequence consisting of n elements and then
implements the uniform choice among these elements. More precisely, UC is
equivalent to a probabilistic construct in which each element of the input se-
quence is occurred with probability 1

n . UC is recursively defined as follows:

UC(h :: t) = h⊕ #t
#t+1

(UC(t)) | UC(nil) = ⊥,
where nil represents the empty sequence, and ⊥ indicates the undefined or error
state. Also, # can be easily defined to calculate the sequence size.

Now, we can use UC to make a uniform choice over elements existing in the
above obtained sequence. Making such a choice, tomorrow is dry with probability
0.4, rainy with probability 0.5, and snowy with probability 0.1. This behavior
exactly corresponds to the probabilistic choice specified initially by P WF. "
We have so far proposed to use probabilistic schemas in order to specify prob-
abilistic operations in our Z-based notation. A distinctive feature of Z is its
schema calculus operations. In the next section, we show these operations do not
work in the presence of probabilistic schemas anymore. We thus introduce a new
set of schema calculus operations into the new formalism that can be applied to
probabilistic schemas as well as ordinary operation schemas.

5 A Calculus for Probabilistic Schemas

We first investigate wether we can use the operations of the Z schema calculus
to manipulate probabilistic schemas. It seems that a simple way to do this is
to transform probabilistic schemas into ordinary ones (using the function []NP)
before applying the schema calculus operations of Z; in this way, we will have
ordinary operation schemas that can be manipulated by the Z schema calculus
operations in the conventional way. However, we show that this approach may
result in unwanted specifications; it even may make the applications of operations
to schemas undefined. For instance, consider the probabilistic schema P WF ,

www.manaraa.com

90 H. Haghighi and M.M. Javanmard

given in example 3.2. This schema specifies a partial operation [17] since the
effect of the operation is undefined for some input values, i.e., when x? <> 2.
To describe a total operation, we give a new specification:

Res ::= OK | ERROR
P P WF ∼= [x?, y! ∈ N; r! ∈ Res |
x? = 2 ∧ r! = OK ∧ (0.4 : y! = 1; 0.5 : y! = 2; 0.1 : y! = 3)]
Exception ∼= [x?, y! ∈ N; r! ∈ Res | x? <> 2 ∧ r! = ERROR ∧ y! = 0],

where y! = 0 indicates an unknown weather state for tomorrow. Now, we
can describe a total operation by applying a disjunction between two schemas
P P WF and Exception above. Before doing this, however, we first translate
P P WF into an ordinary operation schema as follows:

[P P WF]NP ∼= [x? ∈ N; pvar ∈ seq(N×Res× N) |
∀(y!, r!, p) ∈ (N×Res× N) · (y!, r!, p) ∈ pvar ⇔ (x? = 2 ∧ r! = OK∧
((0 ≤ p < 4 ∧ y! = 1) ∨ (4 ≤ p < 9 ∧ y! = 2) ∨ (9 ≤ p < 10 ∧ y! = 3)))]

Since two schemas [P P WF]NP and Exception are type compatible [17], we
can apply the operator ∨ to these schemas. However, in the resulting schema,
there is no relationship between the variables y! and r! coming from Exception
and the sequence pvar coming from [P P WF]NP whereas all the elements of
pvar involve instances of y! and r!. In this way, the resulting specification is
unwanted, or in other words, does not correspond to what is intended by the
initial specification. The problem originates from the fact that using []NP forces
the output variables y! and r! existing in P P WF to be combined into a new
variable, and the resulting variable to be promoted to a sequence.

Interpreting probabilistic schemas before applying the schema calculus oper-
ations may even yield undefined operations. For instance, suppose that we use
∃ y! ∈ N · P P WF to hide y! in the resulting schema. If we use the function
[]NP to interpret P P WF before applying the existential quantifier, we miss
y! since it is combined with some other schema variables and then promoted to
a sequence; in this way, the quantification over y! becomes undefined.

Similar problems occur when we transform probabilistic schemas into ordinary
ones before applying the other schema calculus operations, such as conjunction,
universal quantifier, and sequential composition: By using []NP to interpret prob-
abilistic schemas, the relationship between instances of a variable that exist in
the declaration part of various schemas (or exist in the list of quantified variables
and the declaration part of the quantified schema when using quantifiers) may
be lost; hence, applying schema calculus operations to the resulting schemas may
be undefined or result in unwanted specifications.

Unfortunately, another problem will occur if we try the reverse path, i.e.,
applying the schema calculus operations to probabilistic schemas before inter-
preting them by []NP . For instance, suppose that we apply the operator ∨ to the
schemas P P WF and Exception before interpreting P P WF :

P T WF ∼= P P WF ∨ Exception ∼= [x?, y! ∈ N; r! ∈ Res |
(x? = 2 ∧ r! = OK ∧ (0.4 : y! = 1; 0.5 : y! = 2; 0.1 : y! = 3))∨
(x? <> 2 ∧ r! = ERROR ∧ y! = 0)]

www.manaraa.com

Constructive Development of Probabilistic Programs 91

P T WF does not correspond to the general form of probabilistic schemas (see
definition 3.1). Therefore, we are not allowed to apply the function []NP to
interpret P T WF . It seems that we can solve this problem by manually trans-
forming the resulting schema into the general form of probabilistic schemas or
even changing the definition of []NP to cover schemas such as P T WF ; how-
ever, having such a method in mind, in various situations we encounter various
cases for each of which we must provide a special, manual way.

We have so far shown any of the mentioned paths (interpreting probabilistic
schemas before applying the schema calculus operations or the reverse path) to
employ the operations of the Z schema calculus in our formalism do not work
when we want to manipulate probabilistic schemas. Now, we present another
approach in which the application of operations and the interpretation of proba-
bilistic schemas occur in an interleaved manner. Suppose that []NP operates in a
two-step process, or in other words, []NP is equivalent to the composition of two
functions []NP1 and []NP2 ; the former approximately behaves like the function
[]P introduced by definition 3.3, but unlike []P , []NP1 introduces the variable p
into the declaration part of the schema. Here is the formal definition of []NP1 :

Definition 5.1. Recall P Schema, given in definition 3.1 as the general form
of probabilistic schemas. Also assume that for all real numbers p1, ..., pl, the
maximum number of digits to the right of the decimal point is d. Thus we have:

if P Schema is an ordinary operation schema, [P Schema]NP1 = P Schema;
otherwise,
[P Schema]NP1 ∼=
[x1 ∈ A1; ...; xm ∈ Am; y1 ∈ B1; ...; yn ∈ Bn; p! ∈ &N |
φ ∧ ((0 ≤ p! < p1 ∗ 10d ∧ φ1) ∨ (p1 ∗ 10d ≤ p! < (p1 + p2) ∗ 10d ∧ φ2) ∨ ...∨
((p1 + ...+ pl−1) ∗ 10d ≤ p! < (p1 + ...+ pl) ∗ 10d ∧ φl))]

In definition 5.1, we have used the symbol & when declaring p! in order to be able
to distinguish between probabilistic schemas and ordinary operation schemas
when we want to apply []NP2 later. Based on the next definition, []NP2 takes a
schema and promotes the combination of its output and after state variables to
a sequence, provided that it includes an output variable declared by &.

Definition 5.2. Suppose that []NP2 applies to the following operation schema:

Op Schema ∼= [x1 ∈ A1; ...; xm ∈ Am; y1 ∈ B1; ...; yn ∈ Bn | φ],
where xi(i : 1..m) are input or before state variables, and yj(j : 1..n) are output
or after state variables. Now, we have:

if OP Schema has no output variable declared by &,
then [OP Schema]NP2 = OP Schema;
otherwise,
[OP Schema]NP2 ∼= [x1 ∈ A1; ...; xm ∈ Am;
pvar ∈ seq(B1 × ...×Bn) |
∀(y1, ..., yn) ∈ (B1 × ...×Bn) · (y1, ..., yn) ∈ pvar ⇔ φ]

It can be easily justified that []NP = [[]NP1]NP2 . Now, to manipulate probabilistic
schemas by the operations of the Z schema calculus, we propose to apply these

www.manaraa.com

92 H. Haghighi and M.M. Javanmard

operations between the applications of []NP1 and []NP2 . An informal illustration
of the correctness of this approach is as follows: []NP1 transforms a probabilistic
schema into an ordinary one according to the probabilities involved in its pred-
icate part; however, []NP1 does not promote the combination of the output and
after state variables to a sequence. Therefore, we can apply the operations of the
Z schema calculus to the resulting schema in the usual way; this does not yield
unwanted specifications or undefined operations. At the final stage, we apply
[]NP2 to the resulting schema in order to enable the final program to implement
the initially specified probabilistic behavior.

To implement the above idea, we introduce a new set of schema calculus op-
erations into our Z-based formalism that can be applied to probabilistic schemas
appropriately. In the Z notation [17], there exist operators ¬, ∧, ∨, ∃, ∀, and o

9

for the schema calculus operations negation, conjunction, disjunction, existential
quantifier, universal quantifier, and sequential composition, respectively. Here,
we define a new set of operators consisting of ¬p, ∧p, ∨p, ∃p, ∀p, and o

9p:

Definition 5.3. Let PS1 and PS2 be two probabilistic schemas. Now, we have:

¬PS1 ∼= [¬[PS1]NP1]NP2

PS1 ℘p PS2 ∼= [([PS1]
NP1 ℘ [PS2]

NP1)]NP2 ℘ ∈ {∧,∨, o9}
�p dh · PS1 ∼= [� dh · [PS1]NP1]NP2 � ∈ {∃, ∀},
where dh is the declaration of quantified variables.

To show the usability of the new operations, we apply ∨p to P P WF and
Exception. By this example, we also show that in the case of disjunction between
a probabilistic schema and an ordinary one, we must apply a slight change to
the ordinary schema after using []NP1 and before using ∨:
P P WF ∨p Exception ∼= [([P P WF]NP1 ∨ [Exception]NP1)]NP2 ∼=
[x?, pvar ∈ (N×Res×N) | ∀(y!, r!, p!) ∈ (N×Res×N) · (y!, r!, p!) ∈ pvar ⇔
((x? = 2 ∧ r! = OK∧
((0 ≤ p! < 4 ∧ y! = 1) ∨ (4 ≤ p! < 9 ∧ y! = 2) ∨ (9 ≤ p! < 10 ∧ y! = 3)))∨
(x? <> 2 ∧ r! = ERROR ∧ y! = 0))]

The above resulting schema specifies a total operation. When x? = 2, this oper-
ation produces a sequence consisting of all allowable values of y! and p! and also
reports OK. When x? <> 2, the operation assigns 0 to y! and reports ERROR;
however, the possible values of p! has not been determined for this case, and p!
can take any natural number; it violates producing a finite sequence for pvar.

To solve this problem, it is enough to introduce p! into the declaration part
of Exception and add a conjunct such as p! = 0, limiting the possible values of
p!, into the predicate part of Exception before using ∨ between P P WF and
Exception. Notice that this modification is not required when we use conjunc-
tion or sequential composition operators between a probabilistic schema and an
ordinary one since in these cases, we apply a conjunction between the predicate
parts of two schemas; this scenario automatically limits the possible values of p!.

Before ending this subsection, we show the resulting formalism can be used to
specify any discrete-time Markov chain. Markov chains are widely used to model
stochastic processes with the Markov property (the next state of the system

www.manaraa.com

Constructive Development of Probabilistic Programs 93

depends only on the current state) and discrete (finite or countable) state space
[8]. Of course, since usually a Markov chain would be defined for a discrete set
of times, we concentrate on discrete-time Markov chains.

Now, suppose that we are going to specify an arbitrary discrete-time Markov
chain with n states S1, ..., Sn (n ≥ 1). Also, suppose that for each Si and Sj
(1 ≤ i, j ≤ n), pij denotes the fixed probability that the system process will
next be in state Sj , provided that it is in state Si now. The state schema of the
system and its initialization schema are as follows:

DTMC ∼= [s ∈ N | 1 ≤ s ≤ n]
DTMCInit ∼= [DTMC′ | s′ = m],

where s and m indicate the current and initial states of the system, respectively.
Now, for each system state Si (1 ≤ i ≤ n), we consider a probabilistic schema

to model transitions from Si to all system states (including Si itself) as follows:

P TransFromi
∼= [ΔDTMC | s = i ∧ (pi1 : s′ = 1; ...; pin : s′ = n)]

Finally, having the above defined probabilistic schemas, the following specifica-
tion describes the stochastic process formally:
P SP ∼= P TransFrom1 ∨p P TransFrom2 ∨p ... ∨p P TransFromn

6 Conclusions and Future Work

In this paper, we have presented a Z-based formalism by which one can specify
probabilistic programs formally. We have also reviewed a constructive approach
for formal program development that is well integrated with the new formalism:
since we have interpreted all the new constructs of this formalism in Z itself,
we can still use the translation of the CZ set theory into type theory [12] to
derive functional programs from correctness proofs of probabilistic specifications
written in the new formalism. In this way, we are provided with a completely
constructive framework for developing probabilistic programs formally.

However, the current framework suffers from a main drawback: Recall that we
have proved that using the interpretation function []NP can lead to appropriate
programs, provided that this function is applied to those probabilistic schemas

P Schema ∼= [x1 ∈ A1; ...; xm ∈ Am;
y1 ∈ B1; ...; yn ∈ Bn | φ ∧ (p1 : φ1; ...; pl : φl)]

that obey the following law:
for every predicate φk(k : 1..l), each combination of values of before state and

input variables with one and only one combination of values of after state and
output variables satisfies φk.
Notice that the above law is in fact what has been explicitly assumed in theorem
4.2. For instance, consider the following probabilistic schema:

P GetLEQ ∼= [x? ∈ N; y! ∈ N | 0.5 : y! < x?; 0.5 : y! = x?]

P GetLEQ does not obey the above mentioned law (consider predicate y! < x?).
Now, applying the function []NP to P GetLEQ yields the following schema:

[P GetLEQ]NP ∼= [x? ∈ N; pvar ∈ seq(N× N) | ∀(y!, p!) ∈ (N× N)·
(y!, p!) ∈ pvar ⇔ ((0 ≤ p! < 5 ∧ y! < x?) ∨ (5 ≤ p! < 10 ∧ y! = x?))]

www.manaraa.com

94 H. Haghighi and M.M. Javanmard

A program satisfying the above obtained specification is not what the initial
schema, i.e., P GetLEQ, specifies. For example, for the input value 2, such a
program produces the sequence

< (0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2), (0, 3), (1, 3), (0, 4), (1, 4),
(2, 5), (2, 6), (2, 7), (2, 8), (2, 9) >

Selecting any of the first 10 elements of the above sequence results in an output
value less than 2. In other words, a uniform choice over the elements of this
sequence selects an output value less than 2 with probability 2

3 . It also selects the
output value 2 with probability 1

3 ; however, who wrote the initial specification
wants both the above sorts of output to be produced with the same probability.
This problem is due to the nondeterministic relationship between possible values
of x? and y! allowed by the predicate y! < x? in P GetLEQ.

A similar problem occurs when a probabilistic schema involves a predicate
φk(k : 1..l) that is unsatisfiable for a combination of values of before state
and input variables. For instance, consider the following probabilistic schema
by which we specify an operation that for each input value x, produces x + 1
with probability 0.5 and produces x− 1 with probability 0.5:

P GetAdj ∼= [x? ∈ N; y! ∈ N | 0.5 : y! = x? + 1; 0.5 : y! = x?− 1]

Notice that for the input value x? = 0, there exists no value for the output
variable y! which satisfies the predicate y! = x? − 1. Now, using []NP to in-
terpret P GetAdj results in a program that for input value x? = 0, produces
< (1, 0), (1, 1), (1, 2), (1, 3), (1, 4) >. A uniform choice over the elements of this
sequence always results in the value 1 for the output variable y! while the specifi-
cation writer wants the program to produce the output value 1 with probability
0.5 and aborts (without producing anything) with probability 0.5. Therefore, we
have again obtained a program that does not satisfy the initial specification.
Introducing a new interpretation of probabilistic schemas that solves the above
mentioned problem can be an interesting topic in continuing this work.

To compare our work with other approaches in the literature which apply for-
mal methods to probabilistic systems, it is worth mentioning that, as we have
stated in section 1, most of the contributions in the literature have focused on the
verification of probabilistic programs, and there is too little work on the formal
program development of probabilistic systems. As one of contributions regarding
formal program development, we can point to [1] in which a rewrite-based speci-
fication language, called PMAUDE, has been proposed for specifying probabilis-
tic concurrent and real-time systems. Specifications in PMAUDE are based on a
probabilistic rewrite theory which has both a rigorous formal basis and the charac-
teristics of a high-level programming language. In other words, this theory allows
us to express both specifications and programs within the same formalism.

While our specification language in this paper is based on a different theory
in comparison to that of [1] (i.e., set theory in comparison to rewrite theory), we
are going to utilize one advantage of [1] in our future work; this advantage is that
PMAUDE allows specifications to be easily written in a way that they have no
un-quantified nondeterminism. More precisely, all occurrences of nondetermin-

www.manaraa.com

Constructive Development of Probabilistic Programs 95

ism are replaced by quantified nondeterminism such as probabilistic choices and
stochastic real-time; hence, this work does not have the problem of ours when
both nondeterminism and probability exist in the specification simultaneously.

As another related work, we can point to [6] in which a formalism that is based
on the notion of state-transition is proposed to specify probabilistic processes. In
this work, Jonsson and Larsen define a refinement relation between probabilistic
specifications as inclusion between the sets of processes that satisfy the respective
specifications. One of the most advantages of [6] is the ability to consider variable
probabilities for each transition. More precisely, each transition is labelled by an
appropriate interval of probabilities. Althoughwe use a different theory (set theory
instead of state-transition) as the basis of our specification language, we are going
to employ the idea of [6] to enrich our framework to support variable probabilities.

References

1. Agha, G., Meseguer, J., Sen, K.: PMaude: Rewrite-based Specification Language
for Probabilistic Object Systems. ENTCS 153(2), 213–239 (2006)

2. Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic λ-calculus and Quantitative
Program Analysis. Journal of Logic and Computation 15(2) (2005)

3. Haghighi, H.,Mirian-Hosseinabadi, S.H.: AnApproach toNondeterminism in Trans-
lation of CZ Set Theory into Type Theory. In: FSEN 2005. ENTCS, vol. 159 (2006)

4. Haghighi, H., Mirian-Hosseinabadi, S.H.: Nondeterminism in Constructive Z. Fun-
damenta Informaticae 88(1-2), 109–134 (2008)

5. Haghighi, H.: Nondeterminism in CZ Specification Language. Ph.D. dissertation,
Sharif Univ. of Technology, Iran (2009)

6. Jonsson, B., Larsen, K.G.: Specification and Refinement of Probabilistic Processes.
In: Sixth Annual IEEE Symposium on Logic in Computer Science (1991)

7. Kozen, D.: Semantics of Probabilistic Programs. Journal of Computer and System
Sciences, 328–350 (1981)

8. Meyn, S., Tweedie, R.L.: Markov Chains and Stochastic Stability, 2nd edn.
Cambridge University Press (2008)

9. Martin-Löf, P.: An Intuitionistic Theory of Types: Predicative Part. In: Rose, H.E.,
Sheperdson, J.C. (eds.), pp. 73–118. North Holland (1975)

10. McIver, A., Morgan, C.: Abstraction and Refinement in Probabilistic Systems.
ACM SIGMETRICS Performance Evaluation Review 32(4), 41–47 (2005)

11. McIver, A., Morgan, C.: Developing and Reasoning About Probabilistic Programs
in pGCL. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.) PSSE 2004. LNCS,
vol. 3167, pp. 123–155. Springer, Heidelberg (2006)

12. Mirian-Hosseinabadi, S.H.: Constructive Z. Ph.D. dissertation, Essex Univ. (1997)
13. Morgan, C., McIver, A., Hurd, J.: Probabilistic Guarded Commands Mechanised

in HOL. Theoretical Computer Science, pp. 96–112 (2005)
14. Nordstrom, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s Type

Theory: An Introduction. Oxford University Press (1990)
15. Park, S., Pfenning, F., Thrun, S.: A Probabilistic Language Based Upon Sampling

Functions. In: ACM Symp. on Principles of Prog. Lang., pp. 171–182 (2005)
16. Ramsey, N., Pfeffer, A.: Stochastic Lambda Calculus and Monads of Probability

Distributions. In: 29th ACM Symp. on Principles of Prog. Lang. (2002)
17. Woodcock, J., Davies, J.: Using Z, Specifications, Refinement and Proof.

Prentice-Hall (1996)

www.manaraa.com

Composing Real-Time Concurrent Objects
Refinement, Compatibility and Schedulability�

Mohammad Mahdi Jaghoori

LIACS, Leiden, The Netherlands
CWI, Amsterdam, The Netherlands

jaghoori@cwi.nl

Abstract. Concurrent objects encapsulate a processor each and com-
municate by asynchronous message passing; therefore, they can be com-
posed to naturally model distributed and embedded systems. We model
real-time concurrent objects using timed automata and provide each ob-
ject with a context-specific scheduling policy. The envisioned usage and
guaranteed deadlines of each object is specified in its behavioral interface,
given also in timed automata. Furthermore, multiple objects can be com-
posed only if they are compatible, i.e., if they respect the expected use
patterns given in the behavioral interfaces of each other. In this paper,
we define refinement of timed automata with inputs and outputs from a
new perspective and we take account of deadlines in the refinement the-
ory. Within this framework, we study composition and compatibility of
real-time concurrent objects, and apply it in the context of compositional
schedulability analysis of multiple-processor systems.

1 Introduction

Object oriented paradigm is a good basis for modular modeling and composi-
tional analysis. A distributed system can be modeled as the composition of a
set of concurrent objects where each concurrent object conceptually has a dedi-
cated processor. We use timed I/O automata to model the real-time behavior of
concurrent objects at an abstract level, as in our previous work [11]. Automata
theory provides a rich basis for analysis; nevertheless, we need compositional
techniques to overcome the complexity of large asynchronous distributed sys-
tems. A concurrent object is both the unit of concurrency and distribution; it is
also a natural point for compositional analysis.

In this paper, we aim at compositional schedulability analysis of multiple-
processor distributed systems specified with concurrent objects; a real-time sys-
tem is schedulable if it can finish all of its tasks within their deadlines. While an
object comprises a queue, a scheduling policy and several methods and is thus
modeled in several automata, the abstract behavior of the object is given in one
automaton, called the behavioral interface. A behavioral interface specifies at a
high level and in the most general terms how an object may be used; thus it is
used as the key to compositional analysis. Each object is analyzed individually
� This work is supported by the EU FP7-231620 project: HATS.

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 96–111, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

Composing Real-Time Concurrent Objects 97

for schedulability with respect to its behavioral interface. As in modular verifica-
tion [15], which is based on assume-guarantee reasoning, individually schedulable
objects can be used in systems compatible with their behavioral interfaces. The
schedulability of such systems is then guaranteed [13].

In interface-based design, refinement is usually used as the means for composi-
tional analysis. Given a set of components Cj with interfaces Ij , Cj is considered
a correct implementation if it refines Ij . Then ideally, when the interfaces are
compatible their implementations should also be able to work together. To cap-
ture all incompatibilities, any behavior not allowed in the interfaces should lead
to an error (e.g., [8], cf. related work); however, this is too restrictive in practice
because interfaces are abstract and easily produce spurious counterexamples to
compatibility. An optimistic approach (e.g., [2]) considers two interfaces com-
patible if there exists a common behavior that allows them to work together.
This is useful if we can make sure the implementation of evey components indeed
follows this common behavior. We formalized this last step in [13] by requiring
the composition of the components C =‖j Cj to be a refinement of I =‖j Ij .

In this paper, we give a compositional solution to checking the refinement
between C =‖j Cj and I =‖j Ij . The idea is that the outputs of each component
Cj should be expected as an input by the interface of the receiving component;
this is formalized as every Cj being a refinement of I. Traditional views on
refinement do not allow this relation because Cj and I have incompatible sets of
inputs and outputs. A contribution of this paper is generalizing refinement such
that it considers the common set of actions as the observable behavior. Thus, I
is comparable to each Cj with respect to the inputs and outputs of Cj .

The second contribution of the paper is adding deadlines, as parameters to
actions, to the refinement theory. A deadline on an output specifies when the
task is required to finish. A deadline on an input specifies the guaranteed time
before which the task is finished. Usually parameters are not included in the
theory of refinement; instead, they are handled by expansion, i.e., an action is
expanded to several actions considering different valuations of the parameter.
Deadline parameters cannot be treated by expanding. A component may re-
quire weaker deadlines than its interface on the outputs and provide stronger
guarantees for the inputs. We redefine refinement giving deadlines this special
treatment.

Another contribution of this paper is applying the developed refinement the-
ory in checking compatibility of concurrent objects in a compositional way. In
[13], we have defined compatibility in terms of refinement: a closed system made
up of individually schedulable objects is schedulable if it is a refinement of the
composition of the behavioral interfaces. With our general definition of refine-
ment, we can apply our method in open systems of multiple concurrent objects,
too. The behavioral interface of the composite open system is the composition
of the behavioral interfaces of individual objects.

We will explain how to automate refinement checking in the tool Uppaal [16].
We show further how to check schedulability and compatibility in Uppaal.

www.manaraa.com

98 M.M. Jaghoori

Related Work. Compatibility of real-time systems in automata theory has
been studied for timed interfaces [2] and timed I/O automata [8]. Alfaro et al.
[2] take an optimistic approach in which two interfaces are compatible if there
is a possible way for them to work properly. This leads to a simpler theory
but to implement these interfaces, one needs to adhere to these possibilities to
end up with a working system. David et al. [8] suggest to make specifications
input-enabled by adding an Error state and directing every undesired behavior
to that state. They define two specifications to be compatible if their compo-
sition does not reach the Error state. This is unfortunately too restrictive for
high-level specifications; abstract behavioral interfaces easily fall into spurious
incompatibilities whereas their implementations may still work together. Our
approach bridges the gap between these two methods. In fact, we check whether
the implementations at hand, when composed, indeed follow the behavior that
makes their interfaces compatible (w.r.t. the optimistic approach of [2]).

Analyzing the composition of the concurrent objects is subject to state space
explosion because of their asynchronous nature and all their queues. We proposed
a testing technique for compatibility in [13]. In present paper, we will model check
compatibility in a compositional way with our generalized refinement theory.

Schedulability has been studied for actor languages [18] and event driven dis-
tributed systems [10]. Unlike these works, we work with non-uniformly recurring
tasks as in task automata [9] which fits better the nature of message passing in
object-oriented languages. The advantage of our work, as in [12,5], over task au-
tomata is that tasks are specified and may in turn create new tasks. Furthermore,
we address schedulability analysis of multiple-processor systems. Compared to
[14] we deal with the problem in a compositional way.

A characteristic of our work is modularity. A behavioral interface models the
most general message arrival pattern for an object. A behavioral interface can be
viewed as a contract as in ‘design by contract’ [17] or as a most general assump-
tion in modular model checking [15] (based on assume-guarantee reasoning);
schedulability is guaranteed if the real use of the object satisfies this assump-
tion. In the literature, a model of the environment is usually the task generation
scheme in a specific situation. For example in TAXYS [6], different models of the
environment can be used to check schedulability of the application in different
situations. However, a behavioral interface in our analysis covers all allowable
usages of the object, and is thus an over-approximation of all environments in
which the object can be used. This adds to the modularity of our approach;
every use of the object foreseen in the interface is verified to be schedulable.

2 Timed Automata

Suppose B(C) is the set of all clock constraints on the set of clocks C. A timed
automaton, as defined by Alur and Dill [3], over actions Σ and clocks C is a
tuple 〈L, l0,−→, I〉 representing
– a finite set of locations L (including an initial location l0);
– the set of edges −→⊆ L × B(C) × Σ × 2C × L; and,
– a function I : L �→ B(C) assigning an invariant to each location.

www.manaraa.com

Composing Real-Time Concurrent Objects 99

An edge (l, g, a, r, l′) implies that action ‘a’ may change the location l to l′ by
resetting the clocks in r, if the clock constraints in g (as well as the invariant of
l′) hold. When we use Uppaal [16] for analysis, we allow defining variables of
type boolean and bounded integers. Variables can appear in guards and updates.

A timed automaton is called deterministic if and only if for each a ∈ Σ, if
there are two edges (l, g, a, r, l′) and (l, g′, a, r′, l′′) from l labeled by the same
action a then the guards g and g′ are disjoint (i.e., g ∧ g′ is unsatisfiable).

Semantics. A timed automaton defines a possibly infinite labeled transition
system whose states have the form (l, u) with l ∈ L and u : C → R+ is a clock
assignment. We write 0 for the assignment mapping every clock in C to 0. Initial
state is s0 = (l0,0). There are two types of transitions from a given state (l, u):

– action transitions (l, u)
a→ (l′, u′) where a ∈ Σ, if there exists (l, g, a, r, l′)

such that u satisfies the guard g, u′ is obtained by resetting all clocks in r
and leaving the others unchanged and u′ satisfies the invariant of l′;

– delay transitions (l, u)
d→ (l, u′) where d ∈ R+, if u′ is obtained by delaying

every clock for d time units and for each 0 ≤ d′ ≤ d, u′ satisfies the invariant
of location l.

Refinement. Traditionally, two timed automata are considered comparable if
they have the same set of (observable) actions. We do not define observable and
hidden actions explicitly for timed automata. Given two timed automata A and
B, we consider them comparable if their common set of actions ΣA ∩ΣB is not
empty. A meaningful use of this definition is when there is a meaningful relation
between the sets of actions of the two automata.

Definition 1 (TA Refinement). Given two timed automata A and B, we say
A refines B (written A � B) iff there is a relation R between their underlying
transition systems such that (sA

0 , sB
0) ∈ R, and if (s, t) ∈ R then

– for a ∈ ΣA ∩ ΣB, if s
a−→A s′ then t

a−→B t′ and (s′, t′) ∈ R;
– if A can delay: s

d−→A s′, then B can also delay: t
d−→B t′ and (s′, t′) ∈ R.

3 Timed I/O Automata

In timed I/O automata, the action set Σ is partitioned into inputs (ΣI), outputs
(ΣO) and internal actions (Στ). This allows us to model different components
of a real-time system using automata while their communication is modeled
by synchronization on matching input and output actions. Internal actions are
not necessarily hidden; as we will see in composition, internal actions may model
internal communication which may still be observable, i.e., included in refinement
checking.

We consider timed I/O automata as a superclass of timed automata such that
in normal timed automata ΣI = ΣO = ∅. For an action a we will write a!, a? and
a to denote that it is treated as an output, input or internal action, respectively.

www.manaraa.com

100 M.M. Jaghoori

Composition Composition of two timed I/O automata A and B is written
as S = A ‖ B. The set of locations of S is the Cartesian product of those
of A and B, denoted L(S) = L(A) × L(B) where invariants are defined as
I(lA, lB) = I(lA) ∧ I(lB). The composed automata synchronize on the set of
sync actions Σ∩ = (ΣI

A ∩ ΣO
B) ∪ (ΣO

A ∩ ΣI
B), which are made internal in S:

– input actions: ΣI
S = (ΣI

A ∪ ΣI
B) \ Σ∩

– output actions: ΣO
S = (ΣO

A ∪ ΣO
B) \ Σ∩

– internal actions: Στ
S = Στ

A ∪ Στ
B ∪ Σ∩

The set of transitions of S is computed as follows:

– (l, k)
g,a,r−−−→S (l′, k) when l

g,a,r−−−→A l′ and a �∈ Σ∩
– (l, k)

g,a,r−−−→S (l, k′) when k
g,a,r−−−→B k′ and a �∈ Σ∩

– (l, k)
g∧g′,a,r∧r′
−−−−−−−→S (l′, k′) when l

g,a,r−−−→A l′ and k
g′,a,r′
−−−−→B k′ and a ∈ Σ∩

where by r ∧ r′ we mean updating both r and r′. Semantically, S can delay
if both A and B can delay; S can perform a sync action a ∈ Σ∩ if both A
and B can perform a; S can do any other action if either A or B can do that
action.

For a finite set of timed I/O automata Ai (1 ≤ i ≤ n) to be composable, they
should have disjoint observable actions: ∀1≤i,j≤n ΣI

Ai
∩ ΣI

Aj
= ΣO

Ai
∩ ΣO

Aj
= ∅.

In this case, composition is associative, i.e., (A ‖ B) ‖ C = A ‖ (B ‖ C).
Thus, one could simply write S = A1 ‖ · · · ‖ An to describe the composition of
several composable timed I/O automata communicating with each other. The
composition is called a closed system when ΣI

S = ΣO
S = ∅.

3.1 Refinement for Timed I/O Automata

A recent work by David et al. [8] gives a game-theoretic solution for checking
refinement of timed I/O automata, but they assume input-enabled specifica-
tions. Our definition of refinement for timed automata and timed I/O automata
does not assume input-enabledness; this leads to a more precise notion of com-
patibility (cf. [2,8]). This is more practical and will be used in Section 6 for
schedulability analysis.

Two timed I/O automata A and B are traditionally (e.g., in [8]) considered
comparable if they have the same sets of input and output actions, i.e., ΣI

A =
ΣI

B and ΣO
A = ΣO

B . Since we want to consider refinement in the context of
composition where inputs and outputs may need to be compared to internal
actions (which are in turn the result of synchronization), we need to be more
liberal with the relation of the action sets. We say the timed I/O automata A
and B are comparable for the relation A � B if:

ΣI
A ⊆ ΣI

B ∪ Στ
B ∧ ΣO

A ⊆ ΣO
B ∪ Στ

B ∧ Στ
A ∩ (ΣI

B ∪ ΣO
B) = ∅

www.manaraa.com

Composing Real-Time Concurrent Objects 101

A1 || A2

B1 || B2

A2A1

B2B1

x == 2
a
x := 0

x > 5
a
x := 0

x == 2
a!
x := 0

a!

x >= 2
a?
x := 0

x > 5
a?
x := 0

Fig. 1. Composition and refinement: A1 � B1 and A2 � B2 but A1 ‖ A2 �� B1 ‖ B2.
This result is expected because A1 � B1 ‖ B2 but A2 �� B1 ‖ B2.

In refinement between timed I/O automata, inputs and outputs are treated
differently, as in alternating refinement [4]. Intuitively, when A refines B, the
refined model A must accept any input that is acceptable in B; and, A may
produce an output only if it is allowed at the abstract level B (e.g., see Fig. 1).

As timed IO automata are used in component-based design, we would like
to be able to use them in compositional analysis, too. Given A1 � B1 and
A2 � B2, B1 and B2 could be abstract interfaces for components A1 and A2,
and one might expect that A1 ‖ A2 � B1 ‖ B2. Such a compositional reasoning
does not hold for timed I/O automata; this is illustrated in the counterexample
in Fig. 1. In this example, A1 admits the input a? in a bigger time interval
than B1; it becomes an internal action after synchronization with a! in A2 (cf.
composition in Section 3), this action would exist in A1 ‖ A2 but not necessarily
in B1 ‖ B2. To compositionally infer A1 ‖ A2 � B1 ‖ B2, we suggest an extra
sufficient step A1 � B1 ‖ B2 and A2 � B1 ‖ B2. Here, we give a definition for
refinement of timed I/O automata that supports such compositional analysis.

Definition 2 (TIOA Refinement). Given two comparable timed I/O automata
A and B, we say A refines B iff there is a relation R between their underlying tran-
sition systems such that (sA

0 , sB
0) ∈ R, and if (s, t) ∈ R

– for a ∈ ΣI
A, if t

a−→B t′, then s
a−→A s′ and (s′, t′) ∈ R;

– for a ∈ ΣO
A ∪ (Στ

A ∩ ΣB), if s
a−→A s′, then t

a−→B t′ and (s′, t′) ∈ R;
– if A can delay: s

d−→A s′ then B can also delay: t
d−→B t′ and (s′, t′) ∈ R.

It is easy to see that when A and B are normal timed automata, i.e., the input
and output action sets are empty, Def. 2 simplifies to Def. 1. Furthermore, we do
not require any direct relation between the inputs (resp. outputs) of A and B;
we may compare inputs or outputs of A with internal actions of B. Thus we can
compare arbitrary automata which helps us check refinement in a compositional
way, described below.

Theorem 1. Given the timed I/O automata A1, A2 and B, we have:

A1 � B ∧ A2 � B =⇒ A1 ‖ A2 � B

www.manaraa.com

102 M.M. Jaghoori

In the example in Figure 1, we can make A2 to be a refinement of B1 ‖ B2 by
changing the guard on a!, for example, to x == 6. It is easy to see that in this
case A1 ‖ A2 is also a refinement of B1 ‖ B2.

Corollary 1. Given a finite set of timed I/O automata Ai (1 ≤ i ≤ n) and B,
we have:

A1 � B ∧ . . . ∧ An � B =⇒ A1 ‖ · · · ‖ An � B

In a component-based design where different components Ai implement the be-
havioral interfaces Bi, this corollary helps us check the refinement relation A � B
in a compositional way, where A = A1 ‖ · · · ‖ An and B = B1 ‖ · · · ‖ Bn. Hav-
ing checked this refinement, one could prove safety properties at the abstract
level for B, which then carries over to the refined and more complex system A.
In Section 6 we use this approach for compositional schedulability analysis of a
multiple processor system modeled in concurrent objects.

4 Timed I/O Automata with Deadlines

A deadline specifies the time before which a task must be done. A common
property to check for real-time systems is schedulability, i.e., whether all tasks
finish within their deadlines. We associate a relative deadline d ∈ N to input and
output actions, i.e., the deadline is d time units after the action is taken. The
interpretation of a deadline depends on the action type:

– An automaton with an input action a(d)? guarantees the deadline d; there-
fore, it naturally also guarantees d + 1.

– An output action a(d)! requires a deadline d; naturally, a deadline d is a
stronger requirement than d + 1.

At the lowest level of abstraction, the tasks are implemented and one needs to
check whether they indeed meet their deadlines, as explained in Section 5.

Composition. In presence of deadlines, we restrict composition of timed I/O
automata by allowing only compatible actions to synchronize; two actions a(d)?
and a(d′)! are compatible if d ≤ d′, i.e., the required deadline is not stronger than
the guaranteed one. As a result of this synchronization, the composed automaton
will have an internal action a(d, d′). A deadline interval [d..d′] associated to an
internal action a is stronger than [δ..δ′] if the interval [d..d′] is included in [δ..δ′],
i.e., δ ≤ d and d′ ≤ δ′. When two transitions have a sync action as input and
output with incompatible deadlines, they do not synchronize and they do not
appear in the composed automaton.

Refinement. When considering deadlines in refinement, the refined model must
provide the same (or stronger) deadline guarantees on its inputs compared to
the abstract model; the refined model may not require stronger deadlines on
its outputs than the abstract model. A common internal action cannot have

www.manaraa.com

Composing Real-Time Concurrent Objects 103

a stronger deadline interval than the abstract one. Below, Def. 2 is extended
to include deadlines with the abovementioned considerations. Taking deadline
intervals for internal actions makes this definition of refinement transitive, i.e.,
given A � B and B � C we have A � C.

Definition 3 (Refinement with Deadlines). Given two comparable timed
I/O automata, we say A refines B iff there is a relation R between their under-
lying transition systems such that (sA

0 , sB
0) ∈ R, and if (s, t) ∈ R

– for a ∈ ΣI
A, if t

a(d)?−−−→B t′ then s
a(δ)?−−−→A s′ with d ≥ δ and (s′, t′) ∈ R;

– for a ∈ ΣI
A, if t

a(d,d′
)−−−−→B t′ then s

a(δ)?−−−→A s′ with d ≥ δ and (s′, t′) ∈ R;

– for a ∈ ΣO
A , if s

a(δ)!−−−→A s′ then

• t
a(d)!−−−→B t′ with d ≤ δ and (s′, t′) ∈ R; or,

• t
a(d,d′

)−−−−→B t′ with d′ ≤ δ and (s′, t′) ∈ R;

– for a ∈ Στ
A∩ΣB, if s

a(δ,δ′
)−−−−→A s′ then t

a(d,d′
)−−−−→B t′ and δ ≤ d and d′ ≤ δ′ and

(s′, t′) ∈ R;
– if A can delay: s

d−→A s′ then B can also delay: t
d−→B t′ and (s′, t′) ∈ R.

4.1 Checking Refinement in Uppaal

It has been shown for timed automata that checking refinement A � B is decid-
able when B is deterministic [3]. For input-enabled timed I/O automata, David
et al. [8] use a game-theoretic approach. We gave in [13] a simple algorithm to
test refinement of timed automata, in the flavor of Def. 1, using reachability
analysis in Uppaal. Below, we show how to check refinement for timed I/O au-
tomata with deadlines (cf. Def. 2) again using reachability analysis in Uppaal.
The idea of using reachability analysis to tackle verification problems is not new
(cf. [1]); what is new in this section is how we encode checking for refinement
(as defined in this paper) as a reachability check, especially including deadlines.

To check the refinement relation A � B, first, we assume no deadlines in
checking refinement (cf. Def. 2). We start from A∗ and B∗ being copies of A and
B, respectively, and continue as below:

– First, we repartition the action sets: ΣI
A∗ = ΣO

B∗ = ΣI
A and ΣO

A∗ = ΣI
B∗ =

ΣO
A ∪ (Στ

A ∩ ΣB); other actions are treated as internal. Considering the
requirements that make A and B comparable for the relation A � B (cf.
Section 3.1), it is easy to see that the assignments above do not change the
action set of B∗, i.e., ΣB = ΣB∗ .

– We add an Error location to each of A∗ and B∗.

Next, with the algorithms in Fig. 2, we produce A∗
E = NegGuard(A∗) and B∗

E =
NegGuard(NegInv(B∗)). A∗

E and B∗
E basically have the same behavior as A∗ and

B∗ but they are made input-enabled such that every incompatible action in A or
B leads to a designated Error location, i.e., intuitively, unexpected inputs in A

www.manaraa.com

104 M.M. Jaghoori

Algorithm NegGuard
for every location l ∈ L(A) do

for every action m ∈ ΣI
A do

let gf =
∨
i

gi for all transitions l
gi,m,ri−−−−−→ l′ in A

add l
¬gf ,m,∅−−−−−→ Error

endfor
endfor

Algorithm NegInv
for every location l ∈ L(A) do

let h be the invariant of l in A

add l
¬h,τ,∅−−−−→ Error

change every transition l
g,m,r−−−→ l′ to l

g∧h,m,r−−−−−→ l′

endfor
Remove all location invariants

Fig. 2. Adding transitions to the Error Location to find incompatibilities

and unexpected output or delay in B. Finally, A∗
E and B∗

E have matching inputs
and outputs and thus their composition can be analyzed in a tool like Uppaal.
The Error locations of A∗

E and B∗
E is not reachable iff A � B. To sketch the

proof of this, NegInv and NegGuard help detect the possible incompatibilities
between delay and action transitions, respectively, with respect to Def. 2.

In order to consider deadlines in Uppaal, we add an extra step in computing
A∗ and B∗:

– For every a ∈ ΣI
A, we change a(d) to a(d, 0) in both A∗ and B∗.

– For every a ∈ ΣO
A , we change a(d) to a(0, d) in both A∗ and B∗.

Obviously, the above rules leave the internal actions of B (which already have
the form a(d, d′)) unchanged. Thus, every input and output action of A∗ and
B∗ has two deadline values. Next, we add two fresh global variables δ and δ′; in
Uppaal, global variables are used to pass parameter values. We transform input
and output actions to Uppaal format as follows:

– We change every output transition s
g,a(d,d′

)!,r−−−−−−−→A∗ s′ to s
g,a!,r∧δ:=d∧δ′

:=d′
−−−−−−−−−−−−→A∗s′.

– We change every output transition s
g,a(d,d′

)!,r−−−−−−−→B∗ s′ to s
g,a!,r∧δ:=d−−−−−−−→B∗ s′.

– We change every input transition s
g,a(d,d′

)?,r−−−−−−−→A∗ s′ to s
g∧d≤δ,a?,r−−−−−−−→A∗ s′.

– We change every input transition s
g,a(d,d′

)?,r−−−−−−−→B∗ s′ to s
g∧d≤δ∧δ′≤d′,a?,r−−−−−−−−−−−−→B∗ s′.

The outputs set the values of δ and δ′ to their deadline values which are checked
against the input deadline guarantees in the input actions. This way the deadline
values and the corresponding checks are integrated into the guards and updates
of the automata. Then we can continue in the same way as explained above
without deadlines, i.e., compute A∗

E and B∗
E and check for the reachability of

the Error locations. An example of computing B∗
E is given in the next section.

www.manaraa.com

Composing Real-Time Concurrent Objects 105

x < MAX_REL

release[self][i]?
delta = d

permit[i][self]!
x = 0

req[self][i]?
delta = d

ERROR

!(x < MAX_REL)

x < MAX_REL
release[self][i]?

delta = 0

permit[i][self]!
x = 0

req[self][i]?
delta = 0

Fig. 3. The abstract behavioral interface of a resource and applying NegInv on it

5 Real-Time Concurrent Objects

Concurrent objects encapsulate a processor each and communicate by asyn-
chronous message passing; therefore, they can be composed to naturally model
distributed and embedded systems. An object is an instance of a class with a
context-specific scheduler; a class implements a behavioral interface. In this sec-
tion, we use timed I/O automata with deadlines to model behavioral interfaces,
classes and schedulers.

The observable actions of concurrent objects are the messages they commu-
nicate. For their automata models to be composable, they should have disjoint
sets of inputs (resp. outputs). To achieve this, we consider an action to be a
triple (m, r, s) where m is the message name, r is the receiver object identity,
and s is the sender object identity. The keyword self refers to the identity of
the owner object itself. Given an object A, its input and output actions are
ΣA

I = {(m, r = A, s)} and ΣA
O = {(m, r, s = A)}. For simplicity in presentation,

we may write an action (m, r, s) only as the message name m.

Behavioral Interfaces. A behavioral interface provides an abstract overview
of the object behavior in a single automaton in terms of the messages it may
receive and send. We assume a finite global set M for method names; sending
and receiving messages are written as m! and m?, respectively. We use natural
values d ∈ N to represent deadlines. A behavioral interface B providing a set
of method names MB ⊆ M is formally defined as a deterministic timed I/O
automaton over alphabet ΣB which is partitioned into two sets of actions:

– object outputs received by the environment: ΣB
O = {m!|m ∈ M∧m �∈ MB}

– object inputs sent by the environment: ΣB
I = {m(d)?|m ∈ MB ∧ d ∈ N}

We allow underspecified actions where no deadline is given, e.g., for output ac-
tions above. An underspecified deadline is potentially stronger than any specified
deadline value d ∈ N; therefore, to be able to reuse the definition of refinement,
we assume that underspecified actions have a deadline zero.

A behavioral interface abstracts from specific method implementations, the
queue in the object and the scheduling strategy. It can also be seen as the highest
level of abstraction (i.e., an over-approximation) of the environments that can
communicate with the object.

Fig. 3 (left) gives the behavioral interface of a resource object which guarantees
the deadline d on its inputs req and release. Furthermore, when a requester

www.manaraa.com

106 M.M. Jaghoori

x1 < MAX_REL

x1 < MAX_REL

x1 < MAX_REL

x1 < MAX_REL

req[self][Right]?
deadline=5

reqL[self][Left]?
deadline=5

release[self][Right]?
deadline=5

permit[Right][self]!
x1=0

release[self][Left]?
deadline=5

permit[Left][self]!
x1=0

release[self][Left]?
deadline=5

permit[Left][self]!
x1=0

release[self][Right]?
deadline=5

permit[Right][self]!
x1=0

req[self][Right]?
deadline=5

req[self][Left]?
deadline=5

req[self][Left]?
deadline=5req[self][Right]?

deadline=5

Fig. 4. A mutually exclusive resource

is permitted to take the resource, it has to release it before MAX_REL time
units. This automaton is parameterized in i which must be instantiated with the
identity of the requester object when the requester and the resource objects are
composed. If there are two requesters, the behavioral interface of the resource
can be obtained by composing two instances of this automaton with different
values for i.

Fig. 4 gives the behavioral interface of a mutually exclusive resource shared
by two objects Right and Left. When there are two requests at a time, only one
of them is granted in this model. This model is a refinement of the unrestricted
model in Fig. 3 if 5 <= d. To check refinement, we must apply the algorithm
NegGuard to Fig. 4 and both algorithms NegGuard and NegInv to Fig. 3 (the
result of the latter is shown in Fig. 3 right).

Classes. One can define a class R as a set of methods implementing a specific
behavioral interface B, which must include at least the methods MB. For an
input action m(d)! in the behavioral interface, a correct implementation should
be able to finish method m before d time units. A class R implementing the
behavioral interface B is a set {(m1, A1), . . . , (mn, An)} of methods, where

– MR = {m1, . . . , mn} ⊆ M is a set of method names such that MB ⊆ MR;
– for all i, 1 ≤ i ≤ n, Ai is a timed I/O automaton representing method mi

with the output alphabet Σi = {m!|m ∈ MR} ∪ {m(d)! | m ∈ M ∧ d ∈ N}
and no explicit inputs.

Classes have an initial method which is implicitly called upon initialization and
is used for the system startup. Method automata only send messages while com-
putations are abstracted into time delays. Sending a message m ∈ MR is called
a self call. Self calls may or may not be assigned an explicit deadline. The self
calls with no explicit deadline are called delegation. Delegation implies that the

www.manaraa.com

Composing Real-Time Concurrent Objects 107

internal task (triggered by the self call) is in fact the continuation of the parent
task; therefore, the delegated task inherits the (remaining) deadline of the task
that triggers it.

Schedulers. Receiving and buffering messages and executing the correspond-
ing methods is handled by the scheduler automata. A scheduler automaton im-
plements a queue for storing messages and their deadlines. The scheduler of a
concurrent object is input enabled, i.e., it can receive any message in MR at any
time; this is to model the asynchronous nature of communication between the
objects. Whenever a method is finished, the scheduler selects another message
from the queue (based on its scheduling strategy) and starts the corresponding
method (called context-switch).

Since the object is strongly input-enabled, i.e., it may accept any input at any
time, it is not per se a refinement of the behavioral interface; because the object
may wait (i.e., have a delay transition) for an input while it is not allowed (i.e.,
expected) in the behavioral interface. Next, we describe how we may restrict the
object behavior so that it is schedulable; in this case, it is a correct refinement
of its behavioral interface.

Schedulable Objects. An object is an instance of a class together with a
scheduler automaton. An object is called schedulable if it can finish all of its
tasks within their deadlines. An unrestricted object is trivially non-schedulable,
because it may accept too many inputs in a short time. To restrict the possible
ways in which the methods of an object could be called, we consider only the
incoming messages specified in its behavioral interface. To check an object for
schedulability (e.g., in Uppaal), the inputs of B are changed to outputs m! so
that they match the inputs in the scheduler written as m? and the outputs of
B are changed to inputs written as m? so that they match outputs of method
automata written as m!.

The scheduler automaton moves to an Error location with no outgoing transi-
tions when a task in the queue misses its deadline. Furthermore, as shown in [11],
a schedulable object never puts more than �dmax/bmin� messages in the queue,
where dmax is the longest deadline for any method called on any transition of
the automata (method automata or the input actions of the behavioral interface)
and bmin is the shortest termination time of any of the method automata. Thus
we can put a finite bound on the queue length such that queue overflow implies
non-schedulability. We can calculate the best case runtime for timed automata
as shown in [7].

We explained in [11] how the restricted behavioral model of an object can be
constructed as one automaton. The action set of this automaton are the same as
its behavioral interface. We have also shown in [11] how to model an object in
Uppaal. To capture possible design errors, one can start with checking for dead-
lock in Uppaal. A deadlock may be caused by a mismatching invariant and guards
in a method implementation, or if the Error location in the scheduler is reached.
To ensure schedulability at the same time, one should add a check for queue over-
flow. This can be written in Uppaal as “A� not deadlock and tail ≤ MAX”.

www.manaraa.com

108 M.M. Jaghoori

Furthermore, one may check other properties on the restricted object behavior.
It is easy to see that when the restricted object model is schedulable, it is also a
true refinement of the behavioral interface.

6 Real-Time Distributed Systems

Once an object is checked for schedulability with respect to its behavioral inter-
face, it can be used as an off-the-shelf component to compose distributed systems.
If the assumptions in the behavioral interface of the object are satisfied, the cor-
rect behavior of the object is guaranteed (with respect to the properties already
checked for the object, e.g., its schedulability). Checking this is usually referred
to as compatibility check.

In an optimistic approach [2] two interfaces are considered compatible when
there is a way that they can work together. In this case, there exists at least
one implementation of those interfaces that are compatible, too. What actually
needs to be done next is to check whether the implementations at hand indeed
follow the traces that make their interfaces work together.

For concurrent objects, the composition of their behavioral interfaces shows
the acceptable sequences of messages that may be communicated between the
objects. As compatibility is defined in [13], the system implementation at hand
must be a refinement of the composition of the behavioral interfaces. It is shown
in [13] that, assuming individually schedulable concurrent objects, their compo-
sition is schedulable if they are compatible.

Since our definition of refinement in this paper is not restricted to closed
systems, we can generalize compatibility to any open or closed system. When
compatible concurrent objects form an open component, the composition of their
behavioral interfaces serves as the behavioral interface of their composition. Be-
low, we write A : B to denote an object A with its input behavior restricted to
a behavioral interface B (as explained in the previous section).

Definition 4 (Compatibility). We define the set of concurrent objects Ai : Bi

(1 ≤ i ≤ n) to be compatible iff A1 ‖ · · · ‖ An � B1 ‖ · · · ‖ Bn.

Since the compsition of concurrent objects is usually too big (due to their asyn-
chronyandmessagequeues),model checking compatibility is subject to state-space
explosion; therefore, a testing method has been proposed in [13]. Here, we propose
to use the compositional refinement check to verify compatibility in this sense.

Given Ai : Bi (1 ≤ i ≤ n) when Ai : Bi � B1 ‖ · · · ‖ Bn for all 1 ≤ i ≤ n,
it follows from Theorem 1 that the composition of the restricted objects A′ =
A1 : B1 ‖ · · · ‖ An : Bn is a refinement of B = B1 ‖ · · · ‖ Bn. We still need to
show that the composition of the unrestricted objects A = A1 ‖ · · · ‖ An is also
a refinement of B; in fact, in this setting the behavior of A and A′ is the same.

Theorem 2. The closed system A1 ‖ · · · ‖ An is trace equivalent to the
restricted system A1 : B1 ‖ · · · ‖ An : Bn if ∀1≤i≤nAi : Bi � B1 ‖ · · · ‖ Bn.

Theorems 1 and 2 result in the following corollary:

www.manaraa.com

Composing Real-Time Concurrent Objects 109

Corollary 2. The concurrent objects Ai : Bi (1 ≤ i ≤ n) are compatible iff
Ai : Bi � B1 ‖ · · · ‖ Bn for all 1 ≤ i ≤ n.

This implies that given individually schedulable objects, their composition is also
schedulable if we can show that each object is a refinement of the composition
of the behavioral interfaces of all objects. This method will be complementary
to the testing method we had already proposed in [13].

7 Conclusions and Future Work

We bridge the gap between automata theory and object orientation. In previous
work, we developed schedulability analysis techniques for concurrent objects
modeled in timed I/O automata. In this work, we further developed the related
automata theory such that we can check compatibility in a compositional way.

To be able to argue about schedulability, we extended timed I/O automata
with deadlines. Furthermore, we extended the definition of composition and re-
finement to include deadlines. On the other hand, our definition of refinement is
not restricted to automata with the same sets of inputs and outputs; this allows
us to compare a component, modeled as an automaton, with a composition of
components for refinement.

We applied the refinement theory for timed I/O automata with deadlines
to compositional schedulability analysis of systems modeled with concurrent
objects. Each concurrent object is model checked to be schedulable when its
input behavior is restricted as specified in its behavioral interface; a system is
schedulable when all objects receive inputs as they expect according to their
behavioral interface. This compatibility can be ensured by checking whether the
system is a refinement of the composition of the behavioral interfaces. We showed
in this paper how to model check this in a compositional way.

Currently, we are considering network delays between concurrent objects when
composed. Network delays both affect the deadlines of messages and the input
assumptions of the object receiving that message. Moreover, complex network
structures can also be added to coordinate distributed schedulable services; for
example, to balance the load of a fast client between multiple slow servers.

References

1. Aceto, L., Bouyer, P., Burgueño, A., Larsen, K.G.: The power of reachability testing
for timed automata. Theor. Comput. Sci. 300(1-3), 411–475 (2003)

2. de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed Interfaces. In: Sangiovanni-
Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 108–122.
Springer, Heidelberg (2002)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

4. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating Refinement
Relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 163–178. Springer, Heidelberg (1998)

www.manaraa.com

110 M.M. Jaghoori

5. de Boer, F.S., Jaghoori, M.M., Johnsen, E.B.: Dating Concurrent Objects: Real-
Time Modeling and Schedulability Analysis. In: Gastin, P., Laroussinie, F. (eds.)
CONCUR 2010. LNCS, vol. 6269, pp. 1–18. Springer, Heidelberg (2010)

6. Closse, E., Poize, M., Pulou, J., Sifakis, J., Venter, P., Weil, D., Yovine, S.: TAXYS:
A Tool for the Development and Verification of Real-Time Embedded Systems. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 391–395.
Springer, Heidelberg (2001)

7. Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-
time systems. Formal Methods in System Design 1(4), 385–415 (1992)

8. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O au-
tomata: a complete specification theory for real-time systems. In: Proc. Hybrid
Systems: Computation and Control (HSCC 2010), pp. 91–100. ACM (2010)

9. Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: Schedulability, decid-
ability and undecidability. Information and Computation 205(8), 1149–1172 (2007)

10. Garcia, J.J.G., Gutierrez, J.C.P., Harbour, M.G.: Schedulability analysis of dis-
tributed hard real-time systems with multiple-event synchronization. In: Proc. 12th
Euromicro Conference on Real-Time Systems, pp. 15–24. IEEE (2000)

11. Jaghoori, M.M., de Boer, F.S., Chothia, T., Sirjani, M.: Schedulability of asyn-
chronous real-time concurrent objects. J. Logic and Alg. Prog. 78(5), 402–416 (2009)

12. Jaghoori, M.M., Chothia, T.: Timed automata semantics for analyzing Creol.
In: Proc. Foundations of Coordination Languages and Software Architectures
(FOCLASA 2010). EPTCS, vol. 30, pp. 108–122 (2010)

13. Jaghoori, M.M., Longuet, D., de Boer, F.S., Chothia, T.: Schedulability and compat-
ibility of real time asynchronous objects. In: Proc. RTSS 2008, pp. 70–79. IEEE CS
(2008)

14. Krcal, P., Stigge, M., Yi, W.: Multi-Processor Schedulability Analysis of Pre-
emptive Real-Time Tasks with Variable Execution Times. In: Raskin, J.-F.,
Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 274–289. Springer,
Heidelberg (2007)

15. Kupferman, O., Vardi, M.Y., Wolper, P.: Module checking. Information and Com-
putation 164(2), 322–344 (2001)

16. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1-2), 134–152
(1997)

17. Meyer, B.: Eiffel: The language. Prentice-Hall (1992)
18. Nigro, L., Pupo, F.: Schedulability Analysis of Real Time Actor Systems using

Coloured Petri Nets. In: Agha, G., De Cindio, F., Rozenberg, G. (eds.) APN 2001.
LNCS, vol. 2001, pp. 493–513. Springer, Heidelberg (2001)

Proofs Omitted from Text
Theorem 1. Given the timed I/O automata A1, A2 and B, we have:

A1 � B ∧ A2 � B =⇒ A1 ‖ A2 � B

Proof. For simplicity, we give the proof without considering deadlines. Deadlines
can be added to the proof in a straightforward way.

We write the states of (the underlying transition system of) A = A1 ‖ A2 as
(s1, s2) where si is a state in (the underlying transition system of) Ai. We write
(s1, s2)R(t) to relate a state (s1, s2) in A to t in B using a relation R. We assume
A1 � B and A2 � B with the refinement relations R1 and R2, respectively, as

www.manaraa.com

Composing Real-Time Concurrent Objects 111

defined in Def. 2. We define R such that (s1, s2)R(t) if and only if (s1, t) ∈ R1 or
(s2, t) ∈ R2. We show below that the relation R satisfies the requirements put
forward in Def. 2 and therefore A � B.

Obviously R relates the initial states of A and B. Let’s assume that (s1, s2)R(t).
The set of sync actions of A1 and A2 are Σ∩ = (ΣI

A1
∩ΣO

A2
) ∪ (ΣO

A1
∩ΣI

A2
). By

definition of composition, we have Σ∩ ⊆ Στ
A.

– For a ∈ ΣI
A, we know that a ∈ ΣI

A1
or a ∈ ΣI

A2
and a is not a sync action.

Without loss of generality, we take a ∈ ΣI
A1

. Since A1 � B, by Def. 2, we
know that if t

a−→ t′ in B there is a transition s1

a−→ s′1 in A1 and (s′1, t′) ∈ R1.
Since a is not a sync action, there is a transition (s1, s2)

a−→ (s′1, s2) in A,
too. Since (s′1, t′) ∈ R1, we have (s′1, s2)R(t′).

– For a ∈ ΣO
A ∪ ((Στ

A ∩ ΣB) \ Σ∩), i.e., excluding sync actions, we assume,
without loss of generality, that a ∈ ΣO

A1
∪(Στ

A1
∩ΣB). In this case, A may have

a transition (s1, s2)
a−→ (s′1, s2) only if there is s1

a−→ s′1 in A1. From A1 � B,
we can say that there is also a transition t

a−→ t′ in B and (s′1, t
′) ∈ R1. Since

(s′1, t
′) ∈ R1, we have (s′1, s2)R(t′).

– For a ∈ Στ
A ∩ ΣB ∩ Σ∩, A may have a transition (s1, s2)

a−→ (s′1, s′2) only
if there are s1

a−→ s′1 in A1 and s2

a−→ s′2 in A2. Without loss of generality,
we assume a ∈ ΣO

A1
∩ ΣI

A2
. By considering A1 � B and s1

a−→ s′1, we can
conclude that there is a transition t

a−→ t′ in B and (s′1, t
′) ∈ R1. Since

(s′1, t
′) ∈ R1, we have (s′1, s

′
2)R(t′).

– Finally, if A can delay for d time units, both A1 and A2 can delay and
therefore B can delay for d time units. It is easy to see that the target states
are related by R. ��

To extend this proof with deadlines, consider the case when an input with dead-
line d synchronizes with an output with deadline d′. The generated internal
action has the deadline interval (d, d′). Considering the definition of refinement,
we can easily show that the corresponding interval in B is stronger than (d, d′).

Theorem 2. The closed system A1 ‖ · · · ‖ An is trace equivalent to the restricted
system A1 : B1 ‖ · · · ‖ An : Bn if ∀1≤i≤nAi : Bi � B1 ‖ · · · ‖ Bn.

Proof (idea). It is easy to see that every trace in A′ also exists in A, because
every Ai : Bi is a in fact restriction of Ai.

To show the other direction, take a trace σ = (t1, a1) . . . (tn, an) from A.
We use induction to show that σ is also a trace in A′. As the base case, since
A and A′ start in the same initial states, they can generate the same initial
outputs. Therefore, A′ can output a1 at time t1. Assume that for j < n, σj =
(t1, a1) . . . (tj−1, aj−1) exists in A′ and furthermore A′ can output aj at time tj .
We must show that aj is also an acceptable input at time tj .

Suppose aj is an output action of Aj1 and an input action of Aj2. Since
Aj1 : Bj1 is a refinement of B, the action aj exists in B; and since Aj2 : Bj2 is
also a refinement of B, the action aj is acceptable in Aj2 : Bj2 at time tj . Next,
A′ can produce the output action aj+1 at time tj+1 because it has the same
methods as A. ��

www.manaraa.com

Specification Guidelines to Avoid the

State Space Explosion Problem

Jan Friso Groote, Tim W.D.M. Kouters, and Ammar Osaiweran

Eindhoven University of Technology
Department of Computer Science

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{J.F.Groote,A.A.H.Osaiweran}@tue.nl,

T.W.D.M.Kouters@student.tue.nl

Abstract. During the last two decades we modelled the behaviour of a
large number of systems. We noted that different styles of modelling had
quite an effect on the size of the state spaces of the modelled system.
The differences were so substantial that some specification styles led to
far too many states to verify the correctness of the model, whereas with
other styles the number of states was so small that verification was a
straightforward activity. In this paper we summarise our experience by
providing seven specification guidelines, of which five are worked out in
more detail.

Keywords: Design for verifications, specification guidelines, state space
explosion, model checking.

1 Introduction

These days, we and others have ample experience in system design through
discrete behavioural specification of computer systems. The primary lesson is
that, although, behavioural specification is extremely helpful, it is not enough.
We need to verify that the designed behaviour is correct, in the sense that it
either satisfies certain behavioural requirements or that it matches a compact
external description. It turns out that discrete behaviour is so complex, that a
flawless design without verification is virtually impossible.

When verifying system behaviour, the state space explosion problem kicks in.
This means that the behaviour of any real system quickly has so many states
that despite the use of clever verification algorithms and powerful computers,
verification is often problematic. Three decades of improvements of verification
technology did not provide the means to overcome the state space explosion
problem.

We believe that the state space explosion problem must, therefore, also be
dealt with in another way, namely by designing models such that their behaviour
can be verified. We call this design for verifiability or modelling for verifiabil-
ity. Compared to the development of state space reduction techniques, design
for verifiability is a barely addressed issue. The best we could find is [11], but

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 112–127, 2012.

c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

Specification Guidelines to Avoid the State Space Explosion Problem 113

it primarily addresses improvements in verification technology, too. Specifica-
tion styles from the perspective of expressiveness have been addressed [14], but
verifiability is also not really an issue here.

In this article we provide five specification guidelines that we learned by spec-
ifying complex realistic systems (e.g. traffic control systems, medical equipment,
domestic appliances, communication protocols). For each guideline we give two
examples. The first one does not take the guideline into account and the second
does. We show by a transition system or a table that the state space that is
using the guideline is much smaller. The ‘bad’ and the ‘good’ specifications are
in general not behaviourally equivalent (for instance in the sense of branching
bisimulation) but as we will see, they both capture the application’s intent. All
specifications are written in mCRL2, which is a process specification formalism
based on process algebra [8,15]. A detailed version of this paper that contains a
concise introduction of mCRL2 and two more guidelines can be found in [6].

In hindsight, we can say that it is quite self evident why the guidelines have a
beneficial effect on the size of the state spaces. Some of the guidelines are already
quite commonly used, such as reordering information in buffers, if the ordering is
not important. The use of synchronous communication, although less commonly
used, also falls in this category. Other guidelines such as information polling are
not really surprising, but specifiers appear to have a natural tendency to use
information pushing instead. The use of external specifications may be foreign
to most specifiers.

Although we provide a number of guidelines that we believe are really im-
portant for the behavioural modellist, we do not claim completeness. Without
doubt we have overlooked a number of specification strategies that are helpful
in keeping state spaces small. Furthermore, a systematic or formal approach to
relate the specification pairs for each guideline are beyond the interest of this
paper. Hopefully this document will be an inspiration to investigate state space
reduction from this perspective, which ultimately can be accumulated in effec-
tive teaching material, helping both students and working practitioners to avoid
the pitfalls of state space explosion.

2 Overview of Design Guidelines

In this section we give a short description of the five guidelines that we present
in this paper.

I Information Polling. This guideline advises to let processes ask for informa-
tion, whenever it is required. The alternative is to share information with other
components, whenever the information becomes available. Although, this lat-
ter strategy clearly increases the number of states of a system, it appears to
prevail over information polling in most specifications that we have seen.

II Global Synchronous Communication. If more parties communicate with
each other, it can be that a component 1 communicates with a component
2, and subsequently, component 2 informs a component 3. This requires two
consecutive communications and therefore two state transitions. By using

www.manaraa.com

114 J.F. Groote, T.W.D.M. Kouters, and A. Osaiweran

multi-actions it is possible to let component 1 communicate with component
2 that synchronously communicates with a component 3. This only requires
one transition. By synchronising communication over different components,
the number of states of the overall system can be substantially reduced.

III Avoid Parallelism Among Components. If components operate in par-
allel, the state space grows exponentially in the number of components. By
sequentialising the behaviour of these components, the size of the total state
space is only the sum of the sizes of the state spaces of the individual compo-
nents. In this latter case state spaces are small and easy to analyse, whereas
in the former case analysis might be quite hard. Sequentialising the behaviour
can for instance be done by introducing an arbiter, or by letting a process
higher up in the process hierarchy to allow only one sub-process to operate
at any time.

IV Restrict the use of Data. The use of data in a specification is a main
cause for state-space explosion. Therefore, it is advisable to avoid using data
whenever possible. If data is essential, try to categorise it, and only store
the categories. For example, instead of storing a height in millimetres, store
too low, right height and too high. Finally, take care that data is only stored
in one way. E.g., storing the names of the files that are open in an unordered
buffer is a waste. The buffer can be ordered without losing information.

V Specify the External Behaviour of Sets of Sub-components. If the
behaviour of sets of components are composed, the external behaviour tends
to be overly complex. In particular the state space is often larger than needed.
A technique to keep this behaviour small is to separately specify the expected
external behaviour first. Subsequently, the behaviours of the components are
designed such that they meet this external behaviour.

3 Guideline I: Information Polling

One of the primary sources of many states is the occurrence of data in a system.
A good strategy is to only read data when it is needed and to decide upon this
data, after which the data is directly forgotten. In this strategy data is polled
when required, instead of pushed to those that might potentially need it. An
obvious disadvantage of polling is that much more communication is needed.
This might be problematic for a real system, but for verification purposes it
is attractive, as the number of states in a system becomes smaller when using
polling.

Currently, it appears that most behavioural specifications use information
pushing, rather than information polling. E.g., whenever some event happens,
this information is immediately shared with neighbouring processes.

In order to illustrate the advantage of information polling, we provide two
specifications. The first one is ‘bad’ in the sense that there are more states than
in the second specification. We are now interested in a system that can be trig-
gered by two sensors trig1 and trig2. After both sensors fire a trigger, a traffic
light must switch from red to green, from green to yellow, and subsequently back

www.manaraa.com

Specification Guidelines to Avoid the State Space Explosion Problem 115

trig1

trig2

set

Fig. 1. A simple traffic light with two sensors

to red again. For setting the colour of the traffic light, the action set is used.
One can imagine that the sensors are proximity sensors that measure whether
cars are waiting for the traffic light. Note that it can be that a car activates the
sensors, while the traffic light shows another colour than red. In figure 1 this
system is drawn.

First, we define a data type Colour which contains the three aspects of a
traffic light.

sort Colour = struct green | yellow | red ;

The pushing controller is very straightforward. The occurrence of trig1 and trig2

indicate that the respective sensors have been triggered. In the pushing strategy,
the controller must be able to always deal with incoming signals, and store their
occurrence for later use. In the specification below, the pushing process has
two booleans b1 and b2 for this purpose. Initially, these booleans are false, and
the traffic light is assumed to be red. The booleans become true if a trigger is
received, and are set to false, when the traffic light starts with a green, yellow
and red cycle. Note that we underline all external actions in the specification
(but not in the text or in the diagrams) and we use the same style throughout the
paper. External actions are those actions communicating with entities outside
the described system, whereas internal actions happen internally in components
of the system or are communications among those components.

proc Push(b1, b2:B, c:Colour)
= trig1·Push(true, b2, c)
+ trig2·Push(b1, true, c)
+ (b1∧b2∧c≈red)→set(green)·Push(false , false, green)
+ (c≈green)→set(yellow)·Push(b1, b2, yellow)
+ (c≈yellow)→set(red)·Push(b1, b2, red);

init Push(false, false , red);

The polling controller differs from the pushing controller in the sense that the
actions trig1 and trig2 now have a parameter. It checks whether the sensors have
been triggered using the actions trig1(b) and trig2(b). The boolean b indicates
whether the sensor has been triggered (true: triggered, false: not triggered). In
Poll , sensor trig1 is repeatedly polled, and when it indicates by a true that it

www.manaraa.com

116 J.F. Groote, T.W.D.M. Kouters, and A. Osaiweran

has been triggered, the process goes to Poll1. In Poll1 sensor trig2 is polled, and
when both sensors have been triggered Poll2 is invoked. In Poll2 the traffic light
goes through a colour cycle and back to Poll .

proc Poll = trig1(false)·Poll + trig1(true)·Poll1;
Poll1 = trig2(false)·Poll1 + trig2(true)·Poll2;
Poll2 = set(green)·set(yellow)·set(red)·Poll ;

init Poll ;

The transition systems of both systems are drawn in figure 2. At the left the
diagram for the pushing system is drawn, and at the right the behaviour of the
polling traffic light controller is depicted. The diagram at the left has 12 states
while the diagram at the right has 5, showing that even for this very simple
system polling leads to a smaller state space.

trig2

trig1

trig1

trig2

trig2

trig1

trig1

trig2

trig2

trig1

trig1

trig2

set(yellow)

set(yellow)

set(yellow)

set(yellow)

set(red)

set(red)

set(red)

set(red)

trig2

trig2

trig2

trig2

trig2

trig2

trig1

trig1

trig1

trig1

trig1

trig1

set(green) trig1(true)

set(red)

trig2(true)

set(yellow)

set(green)

trig1(false)

trig2(false)

Fig. 2. Transition systems of push/poll processes

4 Guideline II: Use Global Synchronous Communication

Communication along different components can sometimes be modelled by syn-
chronising the communication over all these components. For instance, instead of

www.manaraa.com

Specification Guidelines to Avoid the State Space Explosion Problem 117

modelling that a message is forwarded in a stepwise manner through a number of
components, all components engage in one big action that says that the message
travels through all components at once. In the first case there is a new state for
every time the message is forwarded. In the second case the total communication
only requires one extra state. The use of global synchronous communication can
be justified if passing this message is much faster than the other activities of the
components, or if passing such a message is insignificant relative to the other
activities.

Several formalisms use global synchronous interactions as a way to keep the
state space of a system small. The co-ordination language REO uses the concept
very explicitly [2]. A derived form can be found in Uppaal, which uses committed
locations [10].

To illustrate the effectiveness of global synchronous communication, we provide
the system in figure 3. A trigger signal enters at a, and is non-deterministically
forwarded via bc or cc to one of the two components at the right. One might for
instance think that there is a complex algorithm that determines whether the
information is forwarded via bc or cc, but we do not want to model the details
of this algorithm. After being passed via bc or cc, the message is forwarded to
the outside world via d or e. To illustrate the effect on state spaces, it is not
necessary that we pass an actual message, and therefore it is left out.

a

cc
e

bc

d

C1

C2

C3

Fig. 3. Synchronous/asynchronous message passing

The asynchronous variant is described below. Process C1 performs a, and
subsequently performs bs or cs, i.e. sending via b or c. The process C2 reads
via b by br, and then performs a d. The behaviour of C3 is similar. The whole
system consists of the processes C1, C2 and C3 where br and bs synchronise via
the Γs operator to become bc, and cr and cs become cc. The ∇v operator allows
multi-actions in v to happen, and blocks all others. The behaviour of this system
contains 8 states and is depicted in figure 4 at the left.

proc C1 = a·(bs + cs)·C1;
C2 = br·d·C2;
C3 = cr·e·C3;

init ∇{a,bc,cc,d,e}(Γ{br |bs→bc,cr|cs→cc}(C1||C2||C3));

www.manaraa.com

118 J.F. Groote, T.W.D.M. Kouters, and A. Osaiweran

ad e

bc cc

a a

d ee
d

cc bc

ae d

a|cc|e a|bc|d

Fig. 4. Transition systems of a synchronous and an asynchronous process

The synchronous behaviour of this system can be characterised by the fol-
lowing mCRL2 specification. Process C1 can perform a multi-action a|bs (i.e.
action a and bs happen exactly at the same time) or a multi-action a|cs. This
represents the instantaneous receiving and forwarding of a message. Similarly,
C2 and C3 read and forward the message instantaneously. The effect is that the
state space only consists of one state as depicted in figure 4 at the right.

proc C1 = a|bs·C1 + a|cs·C1;
C2 = br|d·C2;
C3 = cr|e·C3;

init ∇{a|cc|e,a|bc|d}(Γ{br |bs→bc,cr|cs→cc}(C1||C2||C3));

The operator ∇{a|cc|e,a|bc|d} allows the two multi-actions a|cc|e and a|bc|d, enforc-
ing in this way that in both cases these three actions must happen simultaneously.

5 Guideline III: Avoid Parallelism among Components

When models have many concurrent components that can independently per-
form an action, then the state space of the given model can be reduced by
limiting the number of components that can simultaneously perform activity.
Ideally, only one component can perform activity at any time. This can for in-
stance be achieved by one central component that allows the other components
to do an action in a round robin fashion.

It very much depends on the nature of the system whether this kind of modelling
is allowed. If the primary purpose of a system is the calculation of values, sequen-
tialising appears to be defendable. If on the other hand the sub-components are
controlling all kinds of devices, then the parallel behaviour of the sub-components
might be the primary purpose of the system and sequentialisation can not be used.

www.manaraa.com

Specification Guidelines to Avoid the State Space Explosion Problem 119

In some specification languages explicit avoidance of parallel behaviour be-
tween components has been used. For instance Esterel [3] uses micro steps which
can be calculated per component. In Promela there is an explicit atomicity com-
mand, grouping behaviour in one component that is executed without interleav-
ing of actions of other components [9].

As an example we consider M traffic lights guarding the same number of
entrances of a parking lot. See figure 5 for a diagrammatic representation where
M=3. A sensor detects that a car arrives at an entrance. If there is space in the
garage, the traffic light shows green for some time interval. There is a detector at
the exit, which indicates that a car is leaving. The number of cars in the garage
cannot exceed N .

TLC (1)
show

trig

TLC (2)
show

trig

TLC (3)
show

trig

Coordinator

enter
enter

enter

leave

Fig. 5. A parking lot with three entrances

The first model is very simple, but has a large state space. Each traffic light
controller (TLC) waits for a trigger of its sensor, indicating that a car is waiting.
Using the enters action it asks the Coordinator for admission to the garage. If
a car can enter, this action is allowed by the co-ordinator and a traffic light
cycle starts. Otherwise the enters action is blocked. The Coordinator has an
internal counter, counting the number of cars. When a leave action takes place,
the counter is decreased. When a car is allowed to enter (via enterr), the counter
is increased.

proc Coordinator (count :N)
= (count>0)→leave · Coordinator (count−1)
+ (count<N)→enterr·Coordinator (count+1);

TLC (id :N+)
= trig(id)·enters·show (id , green)·show (id , red)·TLC (id);

init ∇{trig,show ,enterc,leave}(Γ{enters|enterr→enterc}(Coordinator (0)‖
TLC (1)‖TLC (2)‖TLC (3)));

www.manaraa.com

120 J.F. Groote, T.W.D.M. Kouters, and A. Osaiweran

The state space of this control system grows exponentially with the number
of traffic light controllers. In columns 2 and 4 of table 1 the sizes of the state
spaces for different M are shown. It is also clear that the number of parking
places N only contributes linearly to the state space.

Following the guideline, we try to limit the amount of parallel behaviour in the
traffic light controllers. So, we put the initiative in the hands of the co-ordinator
in the second model. It assigns the task of monitoring a sensor to one of the
traffic light controllers at a time. The traffic controller will poll the sensor, and
only if it has been triggered, switch the traffic light to green. After it has done its
task, the traffic light controller will return control to the co-ordinator. Of course
if the parking lot is full, the traffic light controllers are not activated. Note that
in this second example, only one traffic light can show green at any time, which
might not be desirable.

proc Coordinator (count :N, active id :N+)
= (count>0)→leave·Coordinator (count−1, active id)
+ (count<N)→enters(active id)·∑b:B enterr(b)·

Coordinator (count+if(b, 1, 0), if(active id≈M, 1, active id+1));

TLC (id :N+)
= enterr(id)·

(trig(id , true)·show (id , green)·show (id , red)·enters(true)+
trig(id , false)·enters(false)

)·
TLC (id);

init ∇{trig,show ,enterc,leave}(Γ{enters|enterr→enterc}
(Coordinator (0, 1)||TLC (1)||TLC (2)||TLC (3)));

As can be seen in table 1 the state space of the second model only grows linearly
with the number of traffic lights.

Table 1. State space sizes of parking lot controllers (N : no. of traffic lights, M : no. of
parking places)

M parallel (N = 10) restricted (N = 10) parallel (N = 100) restricted (N = 100)

1 44 61 404 601
2 176 122 1, 616 1, 202
3 704 183 6, 464 1, 803
4 2, 816 244 25, 856 2, 404
5 11, 264 305 103, 424 3, 005
6 45, 056 366 413, 696 3, 606
10 11.5 106 610 106 106 6, 010

6 Guideline IV: Restrict the Use of Data

The use of data in behavioural models can quickly blow up a state space. There-
fore, data should always be looked at with extra care, and if its use can be

www.manaraa.com

Specification Guidelines to Avoid the State Space Explosion Problem 121

avoided, this should be done. If data is essential (and it almost always is), then
there are several methods to reduce its footprint. Below we give two examples,
one where data is categorised and one where buffers are ordered.

In order to reduce the state space of a behavioural model, it sometimes helps
to categorise the data in categories, and formulate the model in terms of these
categories, instead of individual values. From the perspective of verification, this
technique is called abstract interpretation [5]. Using this technique, a given data
domain is interpreted in categories, in order to assist the verification process.
Here, we advice that the modeller uses the categories in the model, instead of
letting the values be interpreted in categories during the verification process. As
the modeller generally knows his model best, he also has a good intuition about
the appropriate categories.

AC
trigdist

Fig. 6. An advanced approach controller

Consider for example an intelligent approach controller which measures the
distance of an approaching car as depicted in figure 6. If the car is expected to
pass distance 0 before the next measurement, a trigger signal is forwarded. The
farthest distance the approach controller can observe is M . A quite straightfor-
ward description of this system is given below. Using the action dist the distance
to a car is measured, and the action trig models the trigger signal. The � operator
denotes the else part of a condition.

map M : N;
eqn M = 100;
proc AC(dprev :N) =

∑
d:N

(d<M)→(dist(d)·(2d<dprev)→trig·AC (M)�AC (d));
init AC (M);

The state space of this system is a staggering M2+1 states big, or more con-
cretely 10001 states. This is of course due to the fact that the values of d and
dprev must be stored in the state space to enable the evaluation of the condition
2d<dprev . But only the information needs to be recalled whether this condition
holds, instead of both values of d and dprev . So, a first improvement is to move
the condition backward as is done below, leading to a required M+1 states, or
101 in this concrete case.

proc AC 1(dprev :N) =
∑

d:N
(d<M)→((2d<dprev)→dist(d)·trig ·AC 1(M)

�dist(d)·AC 1(d));
init AC 1(M);

But we can go much further, provided it is possible to abstract from the concrete
distances. Let us assume that the only relevant information that we obtain from

www.manaraa.com

122 J.F. Groote, T.W.D.M. Kouters, and A. Osaiweran

the individual distances is whether the car is far from the sensor or nearby. Note
that we abstract from the concrete speed of the car which was used above. The
specification of this abstract approach controller AAC is given by:

sort Distance = struct near | far ;
proc AAC =

∑
d:Distance dist(d)·((d≈near)→trig·AAC�AAC);

init AAC;

Note that M does not occur anymore in this specification. The state space is
now reduced to two states.

Table 2. Number of states of an non ordered/ordered buffer with max. N elements

N non ordered ordered

1 2 2
2 5 4
3 16 8
4 65 16
5 326 32
6 2.0 103 64
7 14 103 128
8 110 103 256
9 986 103 512
10 9.9 106 1.02 103

11 109 106 2.05 103

12 1.30 109 4.10 103

As a last example we show the effect of ordering buffers. With queues and
buffers different contents can represent the same data. If a buffer is used as a
set, the ordering in which the elements are put into the buffer is irrelevant. In
such cases it helps to maintain an order on the data structure. As an example
we provide a simple process that reads arbitrary natural numbers smaller than
N and puts them in a set. The process doing so is given below. The operator 	
puts an element in front of a list.

map N : N;
insert , ordered insert : N× List(N) → List(N);

var n, n′ : N; b : List(N);
eqn insert(n, b) = if (n ∈ b, b, n	b);

ordered insert(n, []) = [n];
ordered insert(n, n′	b) = if (n<n′, n	n′	b, if (n≈n′, n′	b, n′	

ordered insert(n, b)));
N = 10;

proc B(buffer :List(N)) =
∑

n:N
(n<N)→read(n)·B(insert(n, buffer));

init B([]);

www.manaraa.com

Specification Guidelines to Avoid the State Space Explosion Problem 123

If the function insert is used, the elements are put into a set in an arbitrary
order (more precisely, the elements are prepended). If the function ordered insert
is used instead of insert , the elements occur in ascending order in the buffer. In
table 2 the effect of ordering is shown. Although the state spaces with ordering
also grow exponentially, the beneficial effect of ordering does not need further
discussion.

7 Guideline V: Specify External Behaviour of Sets of
Sub-components

We observed that sometimes the composed behaviour of sets of components can
be overly complex, and contains far too many states, even after applying a be-
havioural reduction. In order to keep the behaviour of such sets of components
small, it is useful to first design the desired external behaviour of this set of
components, and to subsequently design the behaviour of the components such
that they meet this external behaviour. The situation is quite comparable to
the implementation of software. If the behaviour is governed by the implemen-
tation, a system is often far less understandable and usable, than when a precise
specification of the software has been provided first, and the software has been
designed to implement exactly the specified behaviour.

The use of external behaviour for various purposes was most notably defended
in the realm of protocol specification [13], although keeping the state space small
was not one of these purposes. The word service was commonly used in this
setting for the external behaviour. More recently, the ASD development method
has been proposed, where a system is to be defined by first specifying the external
behaviour of a system, which is subsequently implemented [4]. The purpose here
is primarily to allow a designer to keep control over his system.

In order to illustrate how specifications can be used to keep external behaviour
small, we provide a simple example, and we show how a small difference in the
behaviour of the components has a distinctive effect on the complexity in terms
of states. From the perspective of the task that the components must perform,
the difference in the description looks relatively minor. The example is inspired
by the third sliding window protocol in [12] which is a fine example of a set of
components that provides the intended task but has a virtually incomprehensible
external behaviour.

Our system is depicted in figure 7. The first specification has a complex exter-
nal behaviour whereas the external behaviour of the second is straightforward.
The system consists of a device-monitor and a controller that can be started
(start) or stopped (stop) by an external source. The device-monitor observes
the status of a number of devices and sends the defected device number to the
controller via the action broken . The controller comprises a buffer that stores
the status of the devices.

The first specification can be described as follows. The device monitor is
straightforward in the sense that it continuously performs actions brokens(n)
for numbers n<M . The parameter buff represents the buffer by a function from

www.manaraa.com

124 J.F. Groote, T.W.D.M. Kouters, and A. Osaiweran

DeviceMonitor Controller
brokenc(n) out

start

stop

Fig. 7. A system comprises a controller and a device-monitor

natural numbers to booleans. If buff (i) is true, it indicates that a fault report
has been received for device i. The boolean parameter bool indicates whether the
controller is switched on or off and the natural number i is the current position
in the buffer, which the controller uses to cycle through the buffer elements. It
sends an action out whenever it encounters an element that is set to true. The
internal action int takes place when the controller moves to investigate the next
buffer place.

map M :N+;
eqn M=2;
map buff 0:N→B;
eqn buff 0 = λn:N.false;
proc DeviceMonitor =

∑
n:N

(n<M)→brokens(n).DeviceMonitor ;
Controller (buff :N→B, bool:B, i:N)

=
∑

n:N
brokenr(n)·Controller (buff [n→true], bool, i)

+ (¬buff (i)∧bool)→stop·Controller (buff , false, i)
+ (¬bool)→start ·Controller (buff , true, i)
+ (buff (i)∧bool)→out ·Controller (buff [i→false], bool, (i+1)modM)
+ (¬buff (i)∧bool)→int ·Controller (buff , bool, (i+1)mod M)

init τ{brokenc,int}(∇{brokenc,out,start,stop,int}(Γ{brokenr|brokens→brokenc}(
Controller (buff 0, false, 0)||DeviceMonitor)));

The total number of devices is denoted by M . All positions of buff are initially
set to false as indicated by the lambda expression λn:N.false . In this specifica-
tion the controller blocks the stop request if there is a defected device at index i
of the buffer forming a dependency between external and internal behaviour. If
we calculate the state space of the external behaviour of this system with M = 2
and apply a branching bisimulation reduction [7], we obtain the state space de-
picted in figure 8 at the left. Note that the behaviour is remarkably complex. In
particular a number of τ -transitions complicate the transition system. But they
cannot be removed as they are essential for the perceived external behaviour of
the system. Table 3 provides the number of states produced as a function of the
number of devices monitored in the system. The table shows that the state space
of the original system and the state space capturing the external behaviour are

www.manaraa.com

Specification Guidelines to Avoid the State Space Explosion Problem 125

τ

start

stop

τout

τ

out

τ

stop start

τ

τ

τ

τ

start

start

start

stop out

Fig. 8. The system external behaviour

comparable. This indicates a complex external behaviour that might complicate
verification with external parties and makes understanding the behaviour quite
difficult. It might be amazing that the external state space of the system is large.
Actual expectation is that it should be small, matching the specification below,
depicted in the transition system in figure 8 at the right.

proc Stopped = start·Started ;
Started = out·Started + stop·Stopped ;

init Stopped ;

Investigation of the cause of the difference between the actual and the expected
sizes of the transition systems leads to the conclusion that blocking the stop ac-
tion when buff (i) is true is the cause of the problem. If we remove this from
the condition of the stop action, we obtain the mCRL2 specification of the
DeviceMonitor process below. In this specification the stop request is processed
independently from the rest of the behaviour.

Table 3. Sizes of the original and external state space of the monitor controllers

M No. of original states No. of external states
1st spec 2nd spec 1st spec 2nd spec

1 4 4 2 2
2 16 16 8 2
3 48 48 16 2
4 128 128 32 2
5 320 320 64 2
6 768 768 128 2
10 20.5 103 20.5 103 2.48 103 2

www.manaraa.com

126 J.F. Groote, T.W.D.M. Kouters, and A. Osaiweran

proc DeviceMonitor =
∑

n:N
(n<M)→brokens(n).DeviceMonitor ;

Controller (buff :N→B, bool:B, i:N)
=

∑
n:N

brokenr(n)·Controller (buff [n→true], bool, i)
+ bool→stop·Controller (buff , false, i)
+ (¬bool)→start ·Controller (buff , true, i)
+ (buff (i)∧bool)→out ·Controller (buff [i→false], bool, (i+1)modM)
+ (¬buff (i)∧bool)→int ·Controller (buff , bool, (i+1)mod M)

As can be seen from table 3, the number of states of the non-reduced model
remains the same. However, the reduced behaviour is exactly the one depicted
in figure 8 at the right for any constant M .

8 Conclusion

We have shown that different specification styles can substantially influence the
number of states of a system. We believe that an essential skill of a behavioural
modellist is to make models such that the insight that is required can be ob-
tained. If a system is to be designed such that it provably satisfies a number of
behavioural requirements, then the behaviour must be sufficiently small to be
verified. If an existing system is modelled to obtain insight in its behaviour, then
on the one hand the model should reflect the existing system sufficiently well,
but on the other hand the model of the system should be sufficiently simple to
allow to answer relevant questions about the behaviour of the system.

As far as we can see hardly any attention has been paid to the question how to
make behavioural models such that they can be analysed. All attention appears
to be directed to the question of how to analyse given models better. But it is
noteworthy that it is very common in other modelling disciplines to let models be
simpler than reality. For instance in electrical engineering models are as much as
possible reduced to sets of linear differential equations. In queueing theory, only a
few queueing models can be studied analytically, and therefore, it is necessary to
reduce systems to these standard models if analytical results are to be obtained.

We provided five guidelines, based on our experience with building models of
various systems. There is no claim that this set is complete, or even that these five
guidelines are the most important model reduction techniques. What we hope is
that this paper will induce research such that more reduction techniques will be
uncovered, described, classified and subsequently become a standard ingredient
in teaching behavioural modelling.

Acknowledgements. We thank Sjoerd Cranen, Helle Hansen, Jeroen Keiren,
Matthias Raffelsieper, Frank Stappers, Ron Swinkels, Marco van der Wijst, and
Tim Willemse for their useful comments on the text.

References

1. Acharya, S., Franklin, M., Zdonik, S.: Balancing push and pull for data broadcast.
In: Proceedings of the 1997 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 183–194 (1997)

www.manaraa.com

Specification Guidelines to Avoid the State Space Explosion Problem 127

2. Arbab, F.: Reo: A Channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3), 329–366 (2004)

3. Berry, G., Gonthier, G.: The ESTEREL synchronous programming language: de-
sign, semantics, implementation. Science of Computer Programming 19, 87–152
(1992)

4. Broadfoot, G.H.: ASD Case Notes: Costs and Benefits of Applying Formal Methods
to Industrial Control Software. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.)
FM 2005. LNCS, vol. 3582, pp. 548–551. Springer, Heidelberg (2005)

5. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems.
ACM Transactions on Programming Languages and Systems (TOPLAS) 19(2),
253–291 (1997)

6. Groote, J.F., Kouters, T.W.D.M., Osaiweran, A.A.H.: Specification Guidelines to
avoid the State Space Explosion Problem. Technical Report 10-14, Computer Sci-
ence Reports, Department of Computer Science, Eindhoven University of Technol-
ogy, Eindhoven, The Netherlands (2010)

7. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. Journal of the ACM 43(3), 555–600 (1996)

8. Groote, J.F., Mathijssen, A.H.J., Reniers, M.A., Usenko, Y.S., van Weerdenburg,
M.J.: Analysis of distributed systems with mCRL2. In: Alexander, M., Gardner,
W. (eds.) Process Algebra for Parallel and Distributed Processing, pp. 99–128.
Chapman and Hall (2009)

9. Holzmann, G.J.: The SPIN model checker. Primer and reference manual. Addison-
Wesley (2003)

10. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. Journal on Software
Tools for Technology Transfer 1(12), 134–152 (1997)

11. Lin, F.J., Chu, P.M., Liu, M.T.: Protocol verification using reachability analysis:
The state space explosion problem and relief strategies. ACM SIGCOMM Com-
puter Communication Review 17(5), 126–135 (1987)

12. Tanenbaum, A.S.: Computer networks, 2nd edn. Prentice Hall (1988)
13. Vissers, C.A., Logrippo, L.: The importance of the service concept in the design

of data communications protocols. In: Diaz, M. (ed.) Protocol Specification, Test-
ing and Verification (Proc. of the IFIP WG 6.1 Fifth International Workshop on
Protocol Sepcification, Testing and Verification), pp. 3–17. Elsevier North Holland
(1986)

14. Vissers, C.A., Scollo, G., van Sinderen, M., Brinksma, E.: Specification styles
in distributed systems design and verification. Theoretical Computer Science 89,
179–206 (1991)

15. (2010), http://www.mcrl2.org

http://www.mcrl2.org

www.manaraa.com

Strong Normalisation

in λ-Calculi with References

Romain Demangeon1, Daniel Hirschkoff1, and Davide Sangiorgi2

1 ENS Lyon, Université de Lyon, CNRS, INRIA, France
2 INRIA/Università di Bologna, Italy

Abstract. We present a method for ensuring termination of lambda-
calculi with references. This method makes it possible to combine measure-
based techniques for termination of imperative languages with traditional
approaches to termination in purely functional languages, such as logical
relations. More precisely, the method lifts any termination proof for the
purely functional simply-typed lambda-calculus to a termination proof for
the lambda-calculus with references. The method can be made parametric
on the termination technique employed for the functional core.

1 Motivations

This paper studies strong normalisation in λref, a call-by-value λ-calculus with
(higher-order) references. It is well-known that, even in the simply-typed calcu-
lus, the problem is difficult, because references allow one to program loops “via
the memory”. We refer to Boudol’s [3] for a discussion on existing works on this
question.

Boudol [3] has proposed a type and effect system for a calculus whose core is
very similar to λref; the system guarantees termination by means of the realis-
ability technique. That work is revisited and generalised in [1], where the closely
related technique of reducibility candidates is exploited to establish soundness
of the type and effect system. In both these works, the type and effect system
relies on a stratification of memory into regions; the stratification is used to
control interactions between the functional and the imperative constructs, in
order to prevent “loops via the memory”. The stratification plays also a key
role in the structure of the soundness proof, to support the induction argument.
Boudol’s approach has also been investigated by Tranquilli [9], who proposes an
analysis of the stratification imposed by the type and effect system, by means
of a monadic translation. The target of this translation, in the general case,
is a lambda-calculus with recursive types. Tranquilli however shows that when
applying the translation to well-typed source terms, one can avoid the use of re-
cursive types. By combining this observation with a simulation result, the author
concludes that well-typed terms terminate.

In this paper, we propose a different proof strategy for strong normalisation
in λref. Our approach is adapted from [7], where we introduced a type system
for termination of mobile processes. The crux in defining types in that work is to

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 128–142, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

Strong Normalisation in λ-Calculi with References 129

distinguish between functional and imperative channels, and to exploit a stratifi-
cation of imperative channel names. Soundness of the type system is established
by defining a projection of an impure calculus, that is, a calculus featuring im-
perative and functional features, into a purely functional core calculus (in the
context of the π-calculus, the functional subcalculus is given, intuitively, by the
image of the encoding of the λ-calculus in the π-calculus). The proof then relies
on termination of the functional core, which is treated like a “black box” in the
proof: since our projection function preserves divergences, and the target calcu-
lus is terminating, we can reason by contradiction to show that the source of the
translation only consists of terminating terms.

In the present paper we show that we can transport the strategy from [7]
onto λref. In contrast with π-calculus, λref is purely sequential and higher-order
(it involves substitutions of variables with terms); both these features have a
substantial impact on the details of the technique. In this sense, another goal
of the paper is to show that the technique in [7] is not specific to a concurrent
scenario, and can be used on different kinds of impure languages. The “black box”
property for the purely functional subcalculus in [7] remains: the technique for
λref is essentially parametric on the method employed for ensuring termination
of the pure λ-calculus (realisability, reducibility candidates or other methods).
The present paper is devoted to the presentation of our technique in a rather
simple setting, where the core functional language is the simply typed λ-calculus.

With respect to [7], several modifications have to be made in order to handle
λref. Many of them are related to the definition of the projection function, which
in the present work maps λ-terms with references to purely functional terms. In
the π-calculus the projection acts on prefixed terms, simply by replacing some of
them with the inactive process 0; this crucially relies on the operators of parallel
composition and 0 of the process calculus. In the λ-calculus the situation is more
intricate. Consider for instance a λref term of the form T = (λz. �) (ref M),
where � is the unique element of type � (the unit type), and ref M denotes the
allocation of a reference holding the value of M (the – slightly more involved –
syntax and operational semantics of λref will be introduced formally below). The
idea is to project T into some purely functional term T ′, in such a way that: (i) if
T is typable in our type and effect system, then T ′ is typable according to simple
types; (ii) the projection function is defined compositionally on the structure of
terms, and preserves divergences. In a call-by-value strategy, if the evaluation
of M terminates, the evaluation of T yields �. In order to preserve divergences,
because of a potential divergence in M , we cannot define T ′ by simply erasing
the subterm ref M . Instead, we set T ′ def= (λx1.λx2. x1) � M ′, where M ′ is
the purely functional term obtained by applying recursively the projection to
M . This way, T ′ diverges if M ′ does so, and eventually returns �, in case M ′

converges. This shows how the projection acts at an operational level. In the
proof, we also take care of condition (i) above, by defining the translation both
on terms and on types, in such a way as to preserve typability.

Building on the projection function, we derive soundness of the type and
effect system by contradiction: suppose a well-typed λref term T diverges, then

www.manaraa.com

130 R. Demangeon, D. Hirschkoff, and D. Sangiorgi

its projection T ′ is diverging too, which contradicts the fact that T ′ belongs to
a terminating calculus. Termination of T ′ is obtained by an external argument,
namely the strong normalisation proof for the functional subcalculus (here, the
simply typed call by value λ-calculus).

Other technical differences with respect to the technique in the setting of the
π-calculus [7] are discussed later in the paper.

Comparison with [3,1,9]. As we hinted above, the question we address in this
paper has been studied in a very similar setting in other works. In contrast with
the works by Boudol and Amadio, where soundness of the type system is obtained
by a ‘semantic’ approach (be it realisability or reducibility candidates), which is
applied to the whole (impure) calculus, we somehow factor out the imperative
part of the calculus, which allows us to lift a termination proof of λST to a
termination proof of λref.

Tranquilli [9] proceeds similarly, in two steps: a translation into a purely func-
tional calculus, followed by a termination argument about the latter. However,
technically, our approach and his differ considerably, in particular because we
project into a subcalculus, using a translation function which seems unrelated
to Tranquilli’s.

Outline. We introduce λref and its type and effect system in Section 2. Section 3
is devoted to the soundness proof, where we present in particular the projection
function on λref. In Section 4, we discuss how the proof can be extended to
calculi richer than simple types.

2 λref: A λ-Calculus with References

2.1 Syntax and Semantics for λref

We now define the calculi we manipulate in this work. The standard, simply-
typed, λ-calculus with the constant � and the base type � is called λST in
the following. The reduction relation in λST is full β-reduction, and is denoted
using �.

λref is a call-by-value λ-calculus extended with imperative operations (read,
write and update) acting on a store (sometimes called a memory in the fol-
lowing). The store is stratified into regions, which are referred to using natural
numbers, i.e., we suppose that the store is divided into a finite number of re-
gions, and that there exists an enumeration of these regions. Constructs of the
language involving imperative operations are annotated by a region — thus, by
a natural number. For instance, derefn(M) is the operator that reads the value
stored at the address which is returned by the evaluation of M ; n denotes the
fact that this address belongs to the region n of the memory.

To define terms of λref, we rely on a set of addresses, which are distinct from
the variables used in the syntax of the standard λ-calculus. Addresses are written
u(n,T): they are explicitly associated both to a region n and to a type T (types
are described below). These annotations are not mandatory in order to obtain

www.manaraa.com

Strong Normalisation in λ-Calculi with References 131

M ::= (M M)
∣∣ x
∣∣ λx. M

∣∣ �∣∣ refn M
∣∣ derefn(M)

∣∣ M:=nM
∣∣ u(n,T)

T ::= �

∣∣ T refn

∣∣ T →n T

V ::= λx.M
∣∣ x
∣∣ u(n,T)

∣∣ �

R ::= (λx.M) V∣∣ derefn(u(n,T))
∣∣ refn V

∣∣ u(n,T):=nV

E ::= []
∣∣ V E

∣∣ E M∣∣ derefn(E)
∣∣ refn E

∣∣ E:=nM
∣∣ V :=nE

Fig. 1. Syntax for terms, types, values, redexes and evaluation contexts

the results we state in this paper, but they improve the readability of our proofs.
Note in passing that values of different types can be stored in the same region.
We suppose that there exists an infinite number of addresses for a given pair
consisting of a type and a region.

Stores, ranged over using δ, are formally defined as partial mappings from ad-
dresses to values. The (finite) support of δ is written supp(δ), ∅ is the empty store
(supp(∅) = ∅), and δ〈u(n,T) � V 〉 denotes the store δ′ defined by δ′(u(n,T)) = V
and δ′(v) = δ(v) for every v ∈ supp(δ) such that v �= u(n,T).

Figure 1 presents the grammar definitions for (respectively) terms, types,
values, redexes and evaluation contexts.

The standard λ-calculus syntax is extended with the unit value (�), addresses
and three imperative operators. refn M stands for the creation of a new cell
in the store, at region n, and containing the result of the evaluation of M ;
derefn(M) yields the value that is stored at the address given by the evaluation
of M (in region n); finally, M:=nN updates the value stored at the address given
by the evaluation of M with the value of N .

Types extend the simple types of λST with unit (�) and a reference type:
T refn is the type of an address in region n containing values of type T . To
record the latent effect of a function, arrow types are annotated with regions:
intuitively, T1 →n T2 is the type of a function taking arguments of type T1,
returning a term of type T2, and such that evaluation of the body accesses
regions in the memory lower than the region n.

Stratification. We impose a well-formedness condition on types that reflects the
stratification of the store: a term acting at region n cannot be stored in a region
smaller than n + 1. For this, we define reg(T), an integer describing the set of
regions associated to a type T , by:

reg(�) = 0 reg(T refn) = max(n, reg(T))

reg(T1 →n T2) = max(n, reg(T2))

www.manaraa.com

132 R. Demangeon, D. Hirschkoff, and D. Sangiorgi

Definition 1 (Well-formed types). A type T is well-formed if for all its sub-
types of the form T ′ refn, we have reg(T ′) < n.

In the following, we shall implicitly assume that all types we manipulate are well-
formed. Well-formedness of types is the condition that ensures the termination
of the imperative part of a term. This in particular ensures that each time we
reduce a redex derefn(u(n,T)), the obtained value does not create new operations
acting at region n.

Comparison with [3]. The type system we present in the next section is actually
very close to the one given in [3], which in turn is close to the one of [1].

In our presentation, regions, defined in [3] as abstract parts of the store, are
denoted by natural numbers. The two presentations are equivalent. In [3], when
the stratification condition (which is inductively defined on sets of regions) is
met, a partial order between regions can be extracted, and thus integers can
be assigned to regions so that each typable term can be given a well-formed
type using our definitions. Conversely, from a set of regions indexed by natural
numbers we can derive easily a set of corresponding abstract regions satisfying
the stratification condition.

Another difference between the two settings is that our well-formedness condi-
tion for types is actually looser than the one found in [3], allowing us to typecheck
more terms. Indeed, in Definition 1, in the case of an arrow type, we do not im-
pose the well-formedness condition in the type of the argument, making terms
like (λx.(deref2(x) u(3,�))) (ref2 λy.�) acceptable in our setting, while they
are not in [3]. In this example, x has type � ref3 →0

� (detailed typing rules
can be found in the following section), which gives type (� ref3 →0

�) ref2

for ref2 λy.�. Note that this example is phrased using natural numbers for re-
gions: it is not difficult to translate it into Boudol’s framework, and insert the
term in an appropriate context in order to enforce that the (abstract) region
corresponding to 3 dominates the region corresponding to 2.

We think that the works [3] and [1] can easily be adapted with this small
refinement in our definition of well-formedness in order to obtain the same ex-
pressiveness as our system.

2.2 Types and Reduction

Typing. Figure 2 defines two typing judgements, of the form Γ �M : (T, n) for
terms and Γ � δ for stores. Our type system is presented à la Church, and we
write Γ (x) = T when variable x has type T according to type environment Γ .

In a typing judgement Γ �M : (T, n), n defines a bound on the effect of the
evaluation of M , which intuitively corresponds to the highest region accessed
when evaluating M . Effects can be thought of as sets of regions (the part of
the store manipulated by the evaluation of a term), and are denoted by a single
natural number, which stands for the maximum region in the effect.

As explained above, in type T1 →n T2, n refers to the effect of the body of
the function. As a consequence, in rule (App), the effect of the application M N

www.manaraa.com

Strong Normalisation in λ-Calculi with References 133

Typing rules for terms

(App)
Γ � M : (T1 →n T2, m) Γ � N : (T1, k)

Γ � M N : (T2, max(m, n, k))

(Abs)
Γ � M : (T2, n) Γ (x) = T1

Γ � λx. M : (T1 →n T2, 0)

(Ref)
Γ � M : (T1, m)

Γ � refn M : (T1 refn, max(n, m))
(Var)

Γ (x) = T1

Γ � x : (T1, 0)

(Uni)
Γ � � : (�, 0)

(Add)
Γ � u(n,T1) : (T1 refn, 0)

(Asg)
Γ � M : (T1 refn, m) Γ � N : (T1, k)

Γ � M:=nN : (�,max(m, n, k))

(Drf)
Γ � M : (T refn, m)

Γ � derefn(M) : (T, max(m, n))

Typing rules for stores

(Emp)
Γ � ∅ (Sto)

Γ � δ Γ � V : (T, 0)

Γ � δ〈u(n,T) � V 〉

Fig. 2. λref: Type and Effect System

where M has type T1 →n T2 is the maximum between the effect of M , the effect
of N , and n. Indeed the maximum region accessed during the evaluation of M N
is accessed during either the evaluation of M to some function λx.M2, or the
evaluation of N to some value V1, or during the evaluation of M2{V1/x}, whose
effect is n.

We notice that values have an effect 0: values cannot reduce and, as explained
above, the effect of a term stands for the maximum region accessed during its
evaluation.

We extend typing to evaluation contexts by treating the hole as a term variable
which can be given any type and has effect 0.

Reduction. The execution of programs is given by a reduction relation, written
	→, relating states (a state is given by a pair consisting of a term and a store), and
which is defined on Figure 3. We write 	→n

F for a functional reduction, obtained
using rule (β); n refers to the effect of the β-redex, that is, in this call-by-value
setting, the region that decorates the type of the function being triggered. In
other words, we suppose in rule (β) that Γ � λx. M : (TV →n T, m) holds for
some TV , T , m. We introduce similarly imperative reductions, noted 	→n

I , for
reductions obtained using rules (ref), (deref) or (store) (in these cases, the

www.manaraa.com

134 R. Demangeon, D. Hirschkoff, and D. Sangiorgi

(β)
(λx.M V, δ) �→ (M{V/x}, δ)

(ref)
u(n,T) /∈ supp(δ) Γ � V : (T,)

(refn V, δ) �→ (u(n,T), δ〈u(n,T) � V 〉)

(deref)
δ(u(n,T)) = V

(derefn(u(n,T)), δ) �→ (V, δ)

(store)
Γ � V : (T,)

(u(n,T):=nV, (δ)) �→ (�, δ〈u(n,T) � V 〉)

(context)
(M, δ) �→ (M ′, δ′)

(E[M], δ) �→ (E[M ′], δ′)

Fig. 3. λref: Reduction Rules

accessed region n appears explicitly in the rules of Figure 3). We will call a
reduction according to 	→n

F (resp. 	→n
I) “a functional reduction on level n” (resp.

“an imperative reduction on level n”).

Definition 2. We define an infinite computation starting from M as an infinite
sequence (Mi, δi)0≤i such that M0 = M , δ0 = ∅ and ∀i, (Mi, δi) 	→ (Mi+1, δi+1).

We say that a term M diverges when there exists an infinite sequence starting
from M and that M terminates when it does not diverge.

The following result will be useful to prove Proposition 5. It says that we can
replace a term inside an evaluation context with a term of the same type but
with a smaller effect, while preserving typability. The effect of the whole term
can decrease (in the case where E = [] for instance).

Lemma 3. If

⎧⎪⎪⎨⎪⎪⎩
Γ � E[M] : (T, n)
Γ �M : (T0, m)
Γ �M ′ : (T0, m

′)
m′ ≤ m

then Γ � E[M ′] : (T, n′) with n′ ≤ n.

Our type and effect system enjoys the two standard properties of subject substi-
tution and subject reduction. Notice that in the statement of Lemma 4, the effect
associated to M{V/x} is the same as the one associated to M . This holds as the
term V is a value and thus does not introduce new operations on the memory
which are not handled by the type system. Should we have used a call-by-name
setting, the statement of this proposition would have been: “If Γ � M : (T, n),
Γ (x) = T ′ and Γ � N : (T ′, m) then Γ �M{N/x} : (T, max(m, n))”.

Lemma 4 (Subject Substitution).
If Γ �M : (T, n), Γ (x) = T ′ and Γ � V : (T ′, m) then Γ �M{V/x} : (T, n).

www.manaraa.com

Strong Normalisation in λ-Calculi with References 135

We only sketch proofs for some results. The proof for Lemma 4, as well as detailed
proofs for all other results, can be found in [5].

Proposition 5 (Subject Reduction).
Γ � M : (T, n), Γ � δ and (M, δ) 	→ (M ′, δ′) entail that Γ � δ′ and Γ � M ′ :

(T, n′) for some n′ ≤ n.

Proof (Sketch). The proof is done by induction on the derivation of (M, δ) 	→
(M ′, δ′). If the rule (context) is used, we rely on Lemma 3. If the rule (beta) is
used, we use Lemma 4. Cases (ref) and (store) are easy. Case (deref) is done
using the hypothesis that δ is well-typed.

3 Termination of λref Programs

3.1 Defining a Projection from λref to λST

The technique of projection and simulation works as follows. First, we define a
projection function, parametrised upon a region p (we will refer to a “projection
on level p”), which strips a λref term from its imperative constructs (and some
of its functional parts), in order to obtain a λST term.

Then, we prove a simulation result (Lemma 14 below), stating that when a
well-typed state (M, δ) reduces to (M ′, δ′) by a functional reduction on level p,
the projection on level p of M reduces in at least one step to the projection
on level p of M ′; moreover, when (M, δ) reduces to (M ′, δ′) by another type of
reduction then either the projections on level p of M and M ′ are equal, or the
projection of M reduces in at least one step to the projection of M ′. This result
is what makes the projection function divergence preserving, as announced in
Section 1.

With these results at hand, we suppose, toward a contradiction, the existence
of a diverging process M0, and we show the existence of a region p such that an
infinite computation starting from M0 contains an infinite number of functional
reductions on level p. Using the simulation lemma, we obtain by projection a
diverging λST term (as a functional reduction on level p is mapped to at least
one step of reduction), which contradicts strong normalisation of λST.

Before turning to the formal definition of the projection function, let us explain
informally how it acts on derefn(M) — we already gave some ideas about
the projection of refn M in Section 1. Again, the purpose of the projection
is to remove the imperative command. Because we cannot just throw away M
(this would invalidate the simulation lemma), we apply the projection function
recursively to M . Once the projected version of M is executed, we replace the
result with a value of the appropriate type, which we call a generic value.

More precisely, generic values are canonical terms that are used to replace a
given subterm once we know that no divergence can arise due to the evaluation
of the subterm (this would correspond either to a divergence of the subterm, or
to a contribution to a more general divergence). They are defined as follows:

www.manaraa.com

136 R. Demangeon, D. Hirschkoff, and D. Sangiorgi

Definition 6. Given a type T without the ref construct, the generic value VT

of type T is defined by: VT refn = V� = �, and VT1→nT2 = λx.VT2 (x being of
type T1 in the latter term).

In order to program the evaluation of a projected subterm and its replacement
with a generic value, the definition of projection makes use of the following
(families of) projectors:

Π(1,2) = λx.λy. x Π(1,3) = λx.λy.λz. x .

In the following, we shall use these projectors in a well-typed fashion (that is,
we pick the appropriate instance in the corresponding family).

In order to present the definition of the projection function, we need a last
notion, that conveys the intuition that a given term M can be involved in a
reduction on level p. This can be the case for two reasons. Either M is able to
perform (maybe after some preliminary reduction steps) a reduction on level p,
in which case, by the typing rules, the effect of M is greater than p, or M is a
function that can receive some arguments and eventually perform a reduction on
level p, in which case the type system ensures that its type T satisfies reg(T) ≥ p.

Definition 7. Suppose Γ �M : (T, n). We say that M is related to p if either
n ≥ p or reg(T) ≥ p. In the former (resp. latter) case, we say that M is related
to p via its effect (resp. via its type).

We extend this notion to evaluation contexts by treating the hole like a term
variable, for a given typing derivation for a context (this is useful in particular
in the statement of Lemma 13).

Notice that a term containing a subterm whose effect is p is not necessarily
related to p: for instance, we can derive Γ � (λx.�) λy.deref3(u(3,�)) : (�, 0)
for an appropriate Γ , but this term is not related to 3, although we can derive
Γ ′ � deref3(u(3,�)) : (�, 3) for some Γ ′ — one can easily check that this term
cannot be used to trigger a reduction on level 3.

Definition 8. Given a typable M of type T , we define the projection on level p
of M , written prpΓ (M), as follows:

If M is not related to p:
prpΓ (M) = VT

Otherwise:
prpΓ (M1 M2) = prpΓ (M1) prpΓ (M2)

prpΓ (x) = x
prpΓ (λx.M1) = λx.prpΓ (M1)

prpΓ (refn M1) = (Π(1,2) � prpΓ (M1))
prpΓ (derefn(M1)) = (Π(1,2) VT prpΓ (M1))

prpΓ (M1:=nM2) = (Π(1,3) � prpΓ (M1) prpΓ (M2))
prpΓ (u(n,T1)) = �

www.manaraa.com

Strong Normalisation in λ-Calculi with References 137

We extend this definition to evaluation contexts in the following way: we always
propagate the projection inductively in a context E, without checking if the
context is related to p or not. For instance, prpΓ (E1 M) = prpΓ (E1) prpΓ (M) even
if (E1 M) is not related to p.

The projection function maps λref terms to λST terms, where λST is the
simply typed λ-calculus: this is stated in Lemma 10.

Definition 9. We extend the projection function to act on types as follows:

prpΓ (�) = � prpΓ (T refn) = � prpΓ (T1 →n T2) = prpΓ (T1)→ prpΓ (T2) .

Observe that for any type T , prpΓ (T) is a simple type, and VT is a simply-typed
λ-term of type prpΓ (T).

Lemma 10. Take p ∈ �, and suppose Γ �M : (T, n). Then prpΓ (M) belongs to
λST, and has type prpΓ (T).

Proof (Sketch). We reason by induction on the typing judgement in λref. If M is
not related to p, the result follows directly from the remarks above. Otherwise,
we reason by cases on the last rule used to type M and conclude using the
induction hypothesis.

3.2 Simulation Result

In order to reason about the transitions of projected terms, the first step is to
understand how projection interacts with the decomposition of a term into an
evaluation context and a redex.

The lemma below explains how the projection function is propagated within
a term of the form E[M]. There are, intuitively, two possibilities, depending only
on the context and on the level (p) of the projection:

– either E is such that prpΓ (E[M]) = prpΓ (E)[prpΓ (M)] for all M , that is, the
projection is always propagated in the hole to M ,

– or this is not the case and the context is such that, if the effect of M is too
small, the projection inserts a generic value before reaching the hole in E.
In this case prpΓ (E[M]) = prpΓ (E1)[V], where E1 is an ‘initial part’ of E, and
this equality holds independently from M (as long as, like said above, the
effect of M is sufficiently small in some sense).

In the former case, the projection is propagated inductively inside the context
to the hole, no matter the effect of M , whereas in the latter case, if the effect of
M is small enough, the projection does not stop before reaching the hole in E.

Lemma 11. Take p ∈ �, and consider a well-typed context E. We have:

1. Either for all well-typed process M , prpΓ (E[M]) = prpΓ (E)[prpΓ (M)],
2. or there exist E1 and E2 �= [] s.t. E = E1[E2] and, for all M , if k stands for

the effect of M , we are in one of the two following cases:

www.manaraa.com

138 R. Demangeon, D. Hirschkoff, and D. Sangiorgi

(a) If k ≥ p, then prpΓ (E[M]) = prpΓ (E)[prpΓ (M)].
(b) If k < p, then prpΓ (E[M]) = prpΓ (E1)[VT ′′] (where T ′′ is the type of E2).

Proof (Sketch). We proceed by structural induction on E and distinguish two
cases:

1. Either the context is not related to p. This means that E1 = [] and E2 = E.
If k < p then the projection of the whole term returns a generic value. If
k ≥ p then we discuss on the structure of E, use the induction hypothesis
and the definition of projection.

2. If the context is related to p we discuss on the structure of the context and
use the induction hypothesis, constructing at each step the outer context
E1. When we reach a context not related to p, we conclude using case 1.

The properties we now establish correspond to the situation, in the previous
lemma, where M is an imperative redex acting on region p. The typing rules of
Figure 2 insure that firing the redex yields a term which is not related to p via
its effect: depending on the kind of imperative operator that is executed, this
term might either be related to p via its type, or not related to p at all.

In the latter case, we are able to show that the projected versions of the two
terms are related by �+ (the transitive closure of reduction in λST), which
allows us to establish a simulation property.

Fact 12. If E2 is not related to p, then:

1. If E2 = (V3 E3) then V3 is not related to p.
2. If E2 = (E3 M3) then E3 is not related to p.

Lemma 13. If Γ � E2 : (T ′′, m) and E2 is not related to p, then for any
well-typed M, M ′,

1. prpΓ (E2)[(Π(1,2) VT M)] �+ VT ′′ ;
2. prpΓ (E2)[(Π(1,3) VT M M ′)] �+ VT ′′ .

Proof (Sketch). We proceed by structural induction on E2. Fact 12 is necessary:
for instance, if E2 = E3 M3, we have

prpΓ (E2)[(Π(1,2) VT N)] = (prpΓ (E3)[(Π(1,2) VT N)] prpΓ (M3))

with E3 of type T3 → T ′′. Thus, we can use Fact 12 and the induction hypothesis
on E3 to get prpΓ (E3)[(Π(1,2) VT N)] �+ VT3→T ′′ , from which we conclude.

Lemmas 11 and 13 allow us to derive the desired simulation property for λref,
the main point being that a functional reduction on level p is projected into one
reduction in the target calculus (case 4 below).

Lemma 14 (Simulation). Consider p ∈ �, and suppose Γ �M : (T, m).

1. If (M, δ) 	→n
I (M ′, δ′) and n < p, then prpΓ (M) = prpΓ (M ′).

2. If (M, δ) 	→p
I (M ′, δ′), then prpΓ (M) �+ prpΓ (M ′).

www.manaraa.com

Strong Normalisation in λ-Calculi with References 139

3. If (M, δ) 	→n
F (M ′, δ′) and n < p, then prpΓ (M) = prpΓ (M ′).

4. If (M, δ) 	→p
F (M ′, δ′), then prpΓ (M) � prpΓ (M ′).

Proof (Sketch). The structure of the proof is as follows. For cases 1 and 2, terms
are decomposed in the same way but the arguments invoked are different. In
case 1, we use the definition of projection on terms not related to p to conclude;
in case 2, projection yields an “actual term” (not a generic value) and we use
Lemma 13 to conclude.

In these reasonings, the proofs for rules (ref) and (deref) differ, as in the for-
mer case the more complex term appears before the reduction (we have refn V
which reduces to u(n,T)) whereas in the latter case the more complex term ap-
pears after the reduction (we have derefn(u(n,T)) which reduces to V).

Cases 3 and 4 are treated along the lines of cases 1 and 2, except that
Lemma 13 is not required.

3.3 Deriving Soundness

To obtain soundness, we need to show that a diverging term performs an infinite
number of functional reductions on level p, for some p. For this we introduce
a measure that decreases along imperative reductions on level p and does not
increase along reductions on level < p. The measure is given by counting the ac-
tive imperative operators of a term, which are the imperative operators (reference
creations, dereferencings and assignments) that do not occur under a λ.

Definition 15. Take M in λref. The number of active imperative operators on
region p in M , written Aop(M) is defined inductively as follows:

Aop(x) = Aop(λx.M) = Aop(u(n,T)) = 0 Aop(M N) = Aop(M)+Aop(N)

Aop(derefn(M)) = Aop(refn M) = Aop(M) if n �= p
Aop(derefp(M)) = Aop(refp M) = 1 + Aop(M)

Aop(M:=nN) = Aop(M) + Aop(N) if n �= p
Aop(M:=pN) = 1 + Aop(M) + Aop(N)

Aop(M) and the effect of M are related as follows:

Lemma 16. If Γ �M : (T, m) and m < p then Aop(M) = 0.

We are finally able to show that Aop(M) yields the measure we need.

Lemma 17. If Γ �M : (T, m) then:

1. if (M, δ) 	→n
F (M ′, δ′) with n < p then Aop(M ′) ≤ Aop(M),

2. if (M, δ) 	→n
I (M ′, δ′) with n < p then Aop(M ′) ≤ Aop(M),

3. and if (M, δ) 	→p
I (M ′, δ′) then Aop(M ′) < Aop(M).

www.manaraa.com

140 R. Demangeon, D. Hirschkoff, and D. Sangiorgi

Proof (Sketch). We reason by cases on the reduction rules and use Lemma 16
to show that new imperative operators on region p can only be generated by
functional reductions on level ≥ p or by imperative reductions on level > p, and
that each imperative reduction on level p erases one active imperative operator
on region p.

The following lemma states that there exists a maximum region p on which
an infinite number of reductions takes place. With the previous result, we can
deduce that an infinite number of functional reductions take place on level p.

Lemma 18. Suppose that Γ � M : (T, l), and that there exists (Mi, δi)i∈�, an
infinite reduction sequence starting from M . Then:

1. For all i, Mi is typable.
2. There exist p and io s.t.

(a) if i > i0 and (Mi, δi) 	→n
I (Mi+1, δi+1) then n ≤ p,

(b) if i > i0 and (Mi, δi) 	→n
F (Mi+1, δi+1) then n ≤ p,

(c) There exists an infinite set of indexes I s.t. for each i ∈ I, either
(Mi, δi) 	→p

F (Mi+1, δi+1) or (Mi, δi) 	→p
I (Mi+1, δi+1).

(d) There are infinitely many i ∈ I s.t. (Mi, δi) 	→p
F (Mi+1, δi+1).

Proof (Sketch).

1. Follows from Proposition 5.
2. The set of different regions is finite, so we easily find a p satisfying 2a, 2b

and 2c. Lemma 17 ensures that 2d holds.

Theorem 19 (Soundness). If Γ �M : (T, m) then M terminates.

Proof. Consider, by absurd, an infinite computation (Mi, δi)i starting from M =
M0 and δ0. By Lemma 18, all the Mi’s are well-typed, and there is a maximal
p s.t. for infinitely many i, (Mi, δi) 	→p

F (Mi+1, δi+1). Furthermore, there exists
i0 such that every reduction on an index greater than i0 is performed on region
n ≤ p. Consider the sequence (prpΓ (Mi))i>i0 . By Lemma 14, we obtain that for
every i > i0, prpΓ (Mi) �∗ prpΓ (Mi+1). Moreover, prpΓ (Mi) �+ prpΓ (Mi+1) for an
infinite number of i. Thus prpΓ (Mi0) is diverging. This contradicts the termination
of λST.

Remark 20 (Raising the effect). The results we present in this paper still
hold if we add the rule:

(Sub)
Γ �M : (T, n) n ≤ n′

Γ �M : (T, n′)

to the type system.
This rule allows us to be more liberal when typing terms, thus obtaining a

greater expressiveness. For instance, it allows one to store at the same address
functions whose bodies do not have the same effect.

www.manaraa.com

Strong Normalisation in λ-Calculi with References 141

Example 21 (Landin’s Trick). The standard example of diverging term in
λref, known as Landin’s trick, is given by:

(λf.[(λt.(deref1(f) �)) (f:=1λz.(deref1(f) z))]) (ref1 λx.x) .

In order to try and type this term, we are bound to manipulate non well-formed
types.

In the call by value setting of λref, a first address u(1,�→1�) (we use Re-
mark 20 here, as the identity has no effect) is created when evaluating the argu-
ment (ref1 λx.x); this address instantiates f in the body of the outer function.
Then u(1,�→1�) is updated using the function λz.(deref1(f) z), whose type is
� →1

�, at which point the term enters a loop. It is easy to see that the type of
u(1,�→1�) (which is also the type of f) is (�→1

�) ref1 and is not well-formed,
as reg(�→1

�) = 1 �< 1.
On the other hand, consider the following terminating term:

(λf.[(λt.(deref1(f) �)) (f:=1λz.(Π(1,2) I (λy.deref1(f) y)) z]) (ref1 λx.x)

where I = λt. t. This term is close to the example given above, except that
λz.(deref1(f) z) is replaced with λz.(Π(1,2) I (λy.deref1(f) y) z. This new
subterm, stored at address f , contains a dereferencing of f . Yet the term termi-
nates because the dereferencing never comes in redex position. Indeed, the term
(λz.(Π(1,2) I (λy.deref1(f) y)) z) reduces to (Π(1,2) I (λy.deref1(f) y)) which,
in turn, reduces in two steps to I.

Here the type system assigns to (Π(1,2) I (λy.deref1(f) y)) the type � →0
�

and the effect 0. Thus the type of x is �→0
� ref1, which is well-formed.

4 Parametricity

As is the case in [7] for the π-calculus, the method we have presented for the λ-
calculus with references is parametric with respect to a terminating purely func-
tional core, and does not examine the corresponding termination proof. Other
core calculi could be considered. Moreover, if the functional calculus corresponds
to a subset of the simply typed terms, then the result holds directly.

We believe that it is possible to extend our work to polymorphic types, al-
though this extension is not trivial if we consider adding region polymorphism:
for instance, we would have to guarantee that a type like (∀A.A→0 A) refn can-
not have its A component instantiated with a type containing a region strictly
greater than n.

Another idea is to apply this termination technique to a language containing
both references and a recursion operator on integers. By restricting the use of
the latter (in order not to create loops based on recursion), we think that one
could be able to enrich the system we have presented.

By taking as functional core a λ-calculus with complexity bounds (such as, for
instance, [2]), we believe that one can use our technique in order to lift complexity
bounds for impure languages. The main idea is to rely on the projection func-
tion to provide bounds on the number of reductions a terminating typed term
can make.

www.manaraa.com

142 R. Demangeon, D. Hirschkoff, and D. Sangiorgi

Note, to conclude, that references can be encoded in a standard way in the
π-calculus (as well as the call-by-value λ-calculus). One could then wonder if the
method presented in [7] can recognise as terminating the subset of π-processes
corresponding to encodings of λref terms. The question is challenging, as weight-
based methods for termination in π [8] cannot be used to prove termination of
the encoding of λST [6,4].

Acknowledgements. Support from the french ANR projects “CHoCo”, “AEO-
LUS” and “Complice” (ANR-08-BLANC-0211-01), and by the European Project
“HATS” (contract number 231620) is acknowledged.

References

1. Amadio, R.M.: On Stratified Regions. In: Hu, Z. (ed.) APLAS 2009. LNCS,
vol. 5904, pp. 210–225. Springer, Heidelberg (2009)

2. Amadio, R.M., Baillot, P., Madet, A.: An affine-intuitionistic system of types and
effects: confluence and termination. CoRR, abs/1005.0835 (2010)

3. Boudol, G.: Fair Cooperative Multithreading. In: Caires, L., Vasconcelos, V.T. (eds.)
CONCUR 2007. LNCS, vol. 4703, pp. 272–286. Springer, Heidelberg (2007)

4. Cristescu, I., Hirschkoff, D.: Termination in a π-calculus with Subptying (in
preparation, 2011)

5. Demangeon, R.: Termination for Concurrent Systems. PhD thesis, Ecole Normale
Superieure de Lyon (2010),
http://perso.ens-lyon.fr/romain.demangeon/phd.pdf

6. Demangeon, R., Hirschkoff, D., Sangiorgi, D.: Mobile Processes and Termination.
In: Palsberg, J. (ed.) Semantics and Algebraic Specification. LNCS, vol. 5700,
pp. 250–273. Springer, Heidelberg (2009)

7. Demangeon, R., Hirschkoff, D., Sangiorgi, D.: Termination in Impure Concurrent
Languages. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269,
pp. 328–342. Springer, Heidelberg (2010)

8. Deng, Y., Sangiorgi, D.: Ensuring Termination by Typability. Information and Com-
putation 204(7), 1045–1082 (2006)

9. Tranquilli, P.: Translating types and effects with state monads and linear logic
(submitted, 2011)

http://perso.ens-lyon.fr/romain.demangeon/phd.pdf

www.manaraa.com

Compositional Reasoning
for Markov Decision Processes

(Extended Abstract)

Yuxin Deng1�2�� and Matthew Hennessy3���

1 Dept. Comp. Sci. & Eng. and MOE-Microsoft Key Lab for Intell. Comp. & Syst.,
Shanghai Jiao Tong University, China

2 State Key Lab of Comp. Sci., Inst. of Software, Chinese Academy of Sciences
3 Trinity College Dublin, Ireland

Abstract. Markov decision processes (MDPs) have long been used to model
qualitative aspects of systems in the presence of uncertainty. However, much of
the literature on MDPs takes a monolithic approach, by modelling a system as
a particular MDP; properties of the system are then inferred by analysis of that
particular MDP. In this paper we develop compositional methods for reasoning
about the qualitative behaviour of MDPs. We consider a class of labelled MDPs
called weighted MDPs from a process algebraic point of view. For these we define
a coinductive simulation-based behavioural preorder which is compositional in
the sense that it is preserved by structural operators for constructing MDPs from
components.

For finitary convergent processes, which are finite-state and finitely branching
systems without divergence, we provide two characterisations of the behavioural
preorder. The first uses a novel qualitative probabilistic logic, while the second
is in terms of a novel form of testing, in which benefits are accrued during the
execution of tests.

1 Introduction

Markov decision processes (MDPs) have long been used to model qualitative aspects of
systems in the presence of uncertainty [12,13,1]. A comprehensive account of analysis
techniques may be found in [12], while [13] provides a good account of model-checking.

However, much of the literature on MDPs takes a monolithic view of systems; es-
sentially a system is modelled using a particular MDP, and properties of the system are
then inferred by analysis of that MDP. In this paper, instead, we would like to develop
compositional methods for reasoning about qualitative behaviour of Markov decision
processes. This involves defining an appropriate method for comparing the behaviour
MDPs which is susceptible to compositional analysis; the behaviour of a composite
system should be determined by that of its components.

Our starting point is the idea of one system being able to simulate another. For
example consider the following three systems:

� Supported by the National Natural Science Foundation of China (61033002, 61011140074).
�� Supported by SFI project SFI 06 IN.1 1898.

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 143–157, 2012.
c� Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

144 Y. Deng and M. Hennessy

s0

sd

up3down1

t0

td

up2down4

u0
�0

�1

up1

�2

down1

up1

The first, a two-state machine, continually performs an up action, which accrues a ben-
efit of 3 units, followed by a down action, which accrues a benefit of 1. The second ma-
chine performs the same actions but with benefits 2 and 4 respectively. In some sense t0
is an improvement on s0; intuitively t0 can simulate the behaviour of s0 but in so doing
accrue more benefits; this is true even if one of its actions up is less beneficial than the
corresponding action of s0. The same is true for the machine u0; it can also simulate the
behaviour of s0, with more benefit, although in this case some internal weighted actions,
denoted by �, participate in the simulation and add to the accumulation of benefits. In
our terminology we will write s0 �sim t0� s0 �sim u0� However, we will have t0 ��sim u0

because although u0 can simulate the behaviour of t0 it accumulates less benefit.
Similar informal reasoning can also be applied to probabilistic systems. Consider the

following systems:

s1

O T

up2

1
4

3
4

down3down1

t1

U

R D

up2

�0

3
4

1
4

�1

down1

The first, from state s1, can perform the up action with benefit 2 and a quarter of the
time it ends up in a state in which down can be performed with benefit only 1. But
for the remaining three-quarters it ends up in a state in which down can be performed
for the larger benefit 3. The circular darkended node represents a distribution of states,
with its outgoing edges describing the associated probabilities. Again intuitively we can
see that s1 is an improvement on s0 because it can simulate s0 and on average accrue
slightly more benefits; in our theory we will have s0 �sim s1.

The mixture of probabilistic behaviour and internal actions introduces complications.
Consider the system t1 above which after performing an up probabilistically decides
internally whether to perform a down action for benefit 1, or branch back to make

www.manaraa.com

Compositional Reasoning for MDPs 145

another probabilistic choice. However, each time it reverts back it accumulates a non-
zero benefit via the internal weighted action �1, albeit with diminishing probability.
Nevertheless, it will turn out that s0 �sim t1 and indeed s1 �sim t1.

Systems exhibiting both probabilistic and nondeterministic behaviour require more
complicated analysis. Consider the following system:

s2

S T

up1

1
4

3
4

down2

down1

down6

After performing the action up it finds itself either in a state in which the action down
will accrue the benefit 2, or 25% of the time there will be a nondeterministic choice
between it accruing either 1 or 6. In the literature there are numerous mechanisms, such
as policies, schedulers, adversaries, etc. [12,14,13] for resolving such choices. Here one
can see if this choice systematically leads to the lower benefit 1 then s2 will not simulate
s0 as it does not accrue suÆcient benefits. This is a pessimistic outlook; an optimistic
outlook means that the best choices are systematically made. If this is assumed then we
will have s0 �sim s2; in s2 one execution of up followed by down will yield on average
the benefit 1 � (3

4 � 2 �
1
4 � 6) � 4.

The main contribution of the paper is a coinductively defined behavioural preorder
�sim between MDPs based on simulations which validate the examples discussed in-
formally above. We confine our attention to the optimistic approach to the resolution
of nondeterministic choices, although in a later paper we hope to investigate the pes-
simistic approach. We also show that this preorder is compositional in the sense that it
is preserved by structural operators for constructing MDPs from components. The main
operator is one for composing two MDPs in parallel. In P � Q the two MPDs P and
Q remain independent, execute in parallel and may communicate by synchronising on
complementary actions; these internal synchronisations accrue the combined benefits
of the associated complementary actions.

For finitary convergent MDPs, which are finite-state and finitely branching systems
without divergence, we also provide two characterisations for the behavioural preorder
�sim. The first is in terms of a qualitative probabilistic logic ��. In addition to the stan-
dard logical connectives �� � and both maximal and minimal fixpoints this contains a
novel qualitative possibility modality ��	

w
(�1 p
 �2), where p is some probability be-

tween 0 and 1. Intuitively this is satisfied by an MDP which can accrue at least the
benefit w by performing the action �, and subsequently satisfy the probabilistic asser-
tion �1 p
 �2. It turns out that the simulation preorder is completely determined by
the logic ��. Further evidence of the compatibility between the logic and the simu-
lation relation is the fact that every system P has a characteristic formula �(P) in the
logic which captures its behaviour; informally system Q can simulate P if and only if it
satisfies the characteristic formula �(P).

www.manaraa.com

146 Y. Deng and M. Hennessy

Our second characterisation is in terms of a novel form of testing called benefits
testing. Intuitively a system P can be tested by running it in parallel with another testing
system T , and seeing the possible accrued benefits. In the presence of nondeterminism
the execution of the combined system (T � P) will result in a non-empty set of benefits,
Benefits(T � P). Then systems P and Q can be compared by comparing the associated
benefit sets Benefits(T � P) and Benefits(T � Q) where T ranges over some collection
of possible tests. We show that the simulation preorder �sim is also determined in this
manner by a suitable collection of tests T .

The rest of this paper is organised as follows. In Section 2 we introduce the model of
weighted MDPs, the notation of hyper-derivations and some important properties. Then
we define a behavioural preorder based on amortised weighted simulations, which turns
out to be a precongruence in a CCS-like process calculus for MDPs. Next, we provide
logical and testing characterisations of the behavioural preorder over finitary conver-
gent processes. In Section 3 we present a qualitative probabilistic logic whose formulae
completely determine the behavioural preorder. We also show that characteristic formu-
lae can be constructed for any state in such an MDP. In Section 4 we propose a test-
ing framework where our behavioural preorder is sound and complete for may testing
preorder. Finally, we conclude in Section 5.

Due to lack of space, we omit all detailed proofs: they are reported in [4].

2 Simulations for Weighted Markov Decision Processes

There is considerable variation in the literature in the formal definition of a (labelled)
Markov decision process [13,12]. For the purpose of this paper we use Definition 1.

We first fix some notation. A (discrete) probability subdistribution over a countable
set S is a function � : S � [0� 1] with

�
s�S �(s) � 1; the support of such an � is

the set �� � � s � S � �(s) � 0 �. A subdistribution is a (total, or full) distribution
if
�

s�S �(s) � 1. The point distribution s assigns probability 1 to s and 0 to all other
elements of S , so that s� � s. We use �sub(S) to denote the set of subdistributions
over S , and �(S) its subset of full distributions.

Let ��k � k � K� be a set of subdistributions, possibly infinite. Then
�

k�K �k is the
real-valued function in S � � defined by (

�
k�K �k)(s) :�

�
k�K �k(s). This is a partial

operation on subdistributions because for some state s the sum of �k(s) might exceed 1.
If the index set is finite, say �1��n�, we often write �1� � � ���n. For p a real number from
[0� 1] we use p � � to denote the subdistribution given by (p � �)(s) :� p � �(s). Finally
we use � to denote the everywhere-zero subdistribution that thus has empty support.
These operations on subdistributions do not readily adapt themselves to distributions;
yet if

�
k�K pk � 1 for some collection of pk � 0, and the �k are distributions, then so is�

k�K pk � �k.

Definition 1 (Weighted Markov decision process). A weighted Markov decision pro-
cess or wMDP is a 4-tuple �S �A�W���	 where S is a set of states, A a set of actions,

W a set of weights, and �� � S � A � W � �(S). We normally write s
�
��w � to

mean (s� ��w� �) ���. In this paper we set W to be ��0, the set of non-negative real
numbers, and we assume A has the structure Act� � Act� ��� where, for the purpose of
communication, each a in Act has an inverse a satisfying a � a. ��

www.manaraa.com

Compositional Reasoning for MDPs 147

A wMDP is

– finite-state if S is a finite set;

– finitely branching if for each state s, the set �(��w� �) � s
�
��w �� is finite;

– finitary if it is both finite-state and finitely branching.

In the Introduction we have used a straightforward graphical representation for wMDPs;

a state s is represented by a node s while darkened circular nodes are used for dis-
tributions, and arrows between nodes and distributions are annotated with their weights.
Often a point distribution is represented by the unique state in its support; see the first
series of examples with initial states s0� t0 and u0.

2.1 Hyper-derivations

As we have seen in the Introduction, when reasoning informally that t1 can simulate
s0, the limiting behaviour of internal computations must be taken into account. We
formalise this by extending the approach originally given in [5].

In a wMDP actions are only performed by states, in that actions are given by relations
from states to distributions. But formally, systems or processes in general correspond to
distributions over states, so in order to define what it means for a process to perform an
action, we need to lift these relations so that they also apply to distributions. In fact we
will find it convenient to lift them to subdistributions.

Definition 2. Let �� S � (��0 � �sub(S)) be a relation from states to pairs of weights
and subdistributions. Then � � �sub(S)� (��0 ��sub(S)) is the smallest relation that
satisfies:

(i) s � � r� 	 	 implies s � � r� 	 	, and
(ii) (Linearity) �i � � ri� 	i 	 for i � I implies (

�
i�I pi � �i) � (

�
i�I pi � � ri� 	i) for

any pi � [0� 1] (i � I) with
�

i�I pi � 1. ��

An application of Definition 2 to the arrow relation
�
�� in a wMDP gives a relation

(
�
��) � �(S) � (W ��(S)); for convenience we also denote elements of this relation

as �
�
��w 	. Thus, as source of a relation

�
�� we now also allow distributions, and

even subdistributions.

Definition 3 (Hyper-derivations). A hyper-derivation consists of a collection of
subdistributions �� ��k � �

�
k , for k � 0, with the following properties:

� � ��0 � ��0

��0
�
��w0 �

�
1 � ��1

��� (1)

��k
�
��wk �

�
k�1 � �

�
k�1

���

�� �

��

k�0

��k

www.manaraa.com

148 Y. Deng and M. Hennessy

Then we call �� �
��

k�0 �
�
k a hyper-derivative of �, and write �

�
��w ��, where

w �
�

k�0 wk. Note that in general w � ��0 � ���; that is there is no guarantee that the
sum
�

k�0 wk has a finite limit. ��

The reader is referred to [5] for a detailed discussion of the concept of hyper-derivation.

Example 1. Consider the wMDP with initial state t1 discussed in the Introduction.
Then we have the following hyper-derivation:

U � U � �

U
�
��0

3
4
� R �

1
4
� D

3
4
� R

�
�� 3

4

3
4
� U � �

3
4
� U

�
��0 (

3
4

)2 � R � (
3
4

)
1
4
� D

(
3
4

)2 � R
�
��(3

4)2 (
3
4

)2 � U � �

���

(
3
4

)k � U
�
��0 (

3
4

)(k�1) � R � (
3
4

)k 1
4
� D

(
3
4

)(k�1) � R
�
��(3

4)(k�1) (
3
4

)(k�1) � U � �

���

That is, U
�
��w

�
k�0 (3

4)k(1
4 � D) where w �

�
k�1(3

4)k. However this weight evaluates
to 3, while the sum of the sub-distributions is the full point distribution D. In other

words U
�
��3 D. ��

Hyper-derivations satisfy the transitivity property: if �
�
��w1 �1 and �1

�
��w2 �2 then

�
�
��w1�w2 �2. The generation of a hyper-derivative is in general highly nondetermin-

istic. In (1) of Definition 3 the calculation of ��k�1 and ��k�1 from ��k involves making
nondeterministic choices. But these choices can be governed by policies.

Definition 4 (Static policies). A static policy for a wMDP is a partial function

pp : S
 ��0 � �(S) such that if pp(s) � �w� � 	 then s
�
��w �. ��

Let us write �
�
��pp�w �� to mean that the hyper-derivative �� is generated with weight

w from � using the policy pp. Formally this means that in (1) of Definition 3 the weights
wk and subdistributions ��k � �

�
k are calculated as follows:

– s � ��k � if and only if pp(s) is undefined
– s � ��k � if and only if pp(s) is defined
– �wk�1� �

�
k�1 � �

�
k�1 	 �

�
s����k 	

��k (s) � pp(s) for all k � 0.

Theorem 1 (Finite generability). Let pp1� ���� ppn (n � 1) be all the static policies in

a finitary wMDP. Suppose �
�
��ppi�wi �

�
i and wi � � for all 1 � i � n. If �

�
��w ��

then there are probabilities pi for all 1 � i � n with
�n

i�1 pi � 1 such that �w� �� 	 ��n
i�1 pi � �wi� �

�
i 	. ��

www.manaraa.com

Compositional Reasoning for MDPs 149

In later developments it will be important to rule out the possibility of hyper-derivatives
generating an infinite weight.

Definition 5. A wMDP is convergent if s
�
��w � for no state s and weight w; in other

words there is no divergent internal computation from any state. A wMDP is bounded

if it is finitary and whenever �
�
��w �� then w � ��0. ��

A simple source of unboundedness is divergence. Consider the trivial wMDP consisting

of one state s and one arrow s
�
��1 s. This is not a bounded wMDP because s

�
��� s.

In fact for finitary wMDPs, this is the only source of unboundedness:

Theorem 2. Every finitary convergent wMDP is also bounded. ��

The proof of the above theorem relies on Theorem 1. Another important consequence
of Theorem 1 is the following.

Corollary 1. In a bounded wMDP, for every � the set � �w� �� 	 � �
�
��w �� � is com-

pact, in the standard Euclidean topology. ��

2.2 (Amortised Weighted) Simulations

Here we assume some wMDP �S �Act����0���	. Our simulation relation is parametrised
on an initial investment r � ��0 and relates states to distributions, rather than states
to states. It also uses weak arrow relations, defined using hyper-derivations: we write

�
a
��w 	 whenever �

�
��w1 �

� a
��w2 	

�
�
��w3 	, where w � w1 � w2 � w3.

Definition 6. Given a relation � � S � (��0 ��(S)), let �(�) � S � (��0 ��(S)) be
the relation defined by letting s �(�) � r� 	 	 whenever

s
�
��v � implies the existence of some w and 	� with 	

�
��w 	� and � � � r�w�v� 	� 	�

We say � is an (amortised weighted) simulation if �� �(�). The operator �(�) is
(pointwise) monotonic and so it has a maximal fixpoint, which is also a simulation, and
which we denote by �. We often write s �r 	 for s � � r� 	 	 and use � �sim 	 to mean
that there is some initial investment r such that � �r 	. ��

The basic idea here is that s �r 	 intuitively means that 	 can simulate the actions of s
but with more benefit, or at least not less benefit. The parameter r should be viewed as
compensation which 	 has accumulated and can be used in local comparisons between

the benefits of individual actions. Thus when we simulate s
�
��v � with 	

�
��w 	�

there are two possibilities:
(i) w � v; here the accumulated compensation is increased from r to r � (w � v). In

subsequent rounds this extra compensation may be used to successfully simulate
a heavier action with a lighter one.

(ii) w � v; here the compensation is decreased from r to r � (v � w).
Finally it is important that r � 0, and remains greater than or equal to zero, or otherwise
the presence of weights would have no e�ect. Thus in case (ii) if (v � w) � r then the
attempted simulation is not successful.

We now show that with this formal definition of the relation �sim the various
statements asserted in the Introduction are true:

www.manaraa.com

150 Y. Deng and M. Hennessy

(l-act)

�w�(�i�I pi � Pi)
�

��w �ist(� (pi� Pi) � i � I)

(l-alt)

P1
�

��w �

P1 � P2
�

��w �

(l-comm)

P1
a

��w1 �1� P2
a

��w2 �2

P1 � P2
�

��w �1 � �2

w � w1 � w2

(l-par)

P1
�

��w �

P1 � P2
�

��w � � P2

(l-hide)

P
�

��w �

P
a
�

��w �
a
� � a� a

(l-def)

PA
�

��w �

A
�

��w �
A � PA

Fig. 1. Weighted actions for CCMDP

Example 2. Consider the first two systems, s0 and t0, viewed as wMDPs. Then the
relation � given by � � �(s0� � r� t0) � r � 1� � �(sd� � r� td) � r � 0� is a simulation.
Thus s0 �r t0 for any r � 1. As pointed out in [11] this example shows the need for the
parametrisation with respect to initial investments r; Because of the weights associated
with the action up an initial investment of at least one is required in order for t0 to be
able to match s0.

We also have s0 �r s1 for any r � 1 because of the following simulation:
� � �(s0� � r� s1) � r � 1� � �(sd� � r� �) � r � 0�

where � is the distribution 1
4 � O �

3
4 � T . Note that this is indeed a simulation because

�
down
��2�5 s1. Incidently this example shows the necessity of relating states to distribu-

tions, rather than states; no individual state accessible from s1 can simulate sd .
Similarly s1 �r t1 for every r � 0 because of the simulation:
� � �(s1� � r� t1) � r � 0� � �(O� � r�U) � r � 0� � �(T� � r�U) � r � 0�

This relies on the fact that U
down
��4 t1, which follows by transitivity, since we have

already seen in Example 1 that U
�
��3 D.

Finally s0 �2 s2 because of the following simulation:
� � �(s0� � r� s2) � r � 2� � �(sd� � r� �) � r � 0�

where � is the distribution 1
4 � S �

3
4 � T . Note that �

down
��3 s2 although it is also possible

for it to do the down action for much less benefit. ��

The simulation relations �r are defined coinductively. But in bounded wMDPS they can
also be characterised inductively.

Definition 7. For every k � 0 we define the relation �k� S � (��0 ��(S)) as follows:
(i) �0

� S � (��0 ��(S))
(ii) �k�1

� �(�k) for every k � 0.
Finally we let �� be

��
k�0 �

k. ��

Theorem 3. In a bounded wMDP, the two relations � and �� coincide. ��

Corollary 1 plays a crucial role in proving the above theorem.

The simplest approach to discussing compositionality is, as in [8], to introduce a
process calculus-like syntax for wMDPs. Our calculus, CCMDP, is based on CCS:

P ::� �w�(
i�I pi � Pi) � P � P � P � P � 0 � P�a � A (2)

www.manaraa.com

Compositional Reasoning for MDPs 151

The main operator is prefixing, �w�(
i�I pi � Pi)� Here � is taken from Act�, w from ��0,
I is a non-empty finite index set and pi are probabilities satisfying

�
i�I pi � 1. We also

assume a set of definitional constants, ranged over by A, and each such A has a definition
associated with it, a process term PA. We often write these definitions as A � PA�

Intuitively, we view each process term as describing a wMDP. Formally we describe
one overarching wMDP where the states are all terms P in the grammar (2) and the

weighted actions P
�
��w � are those which can be derived by the rules in Figure 1; ob-

vious symmetric counterparts to the rules (l-alt) (l-par) are omitted. In rule (l-act)
we use the obvious notation�ist(� (pi� Pi) � i � I �) for constructing a distribution from
the formal term
i�I pi � Pi. In rules (l-comm) and (l-par) we use an abbreviation for
distributing parallel composition over a distribution: e.g. �1 � �2 is the distribution given
by (�1 � �2)(R) � �1(P1) � �2(P2) if R � P1 � P2 and 0 otherwise. Similar is the hiding
operator in (l-hide). Note that all of the wMDPs described graphically in the Intro-
duction can be described in CCMDP. In the sequel we will not distinguish between the
syntactic term P, its interpretation as a state in the wMDP defined in Figure 1, and the
wMDP it induces by considering only those states accessible from it.

Theorem 4 (Compositionality). The preorders �r, for each r � ��0, are preserved by
each of the operators in the language CCMDP. ��

Example 3. Let P�Q be two processes with P �0 Q. Consider the following processes:
U � �0�(�1�U 3

4

 down1�Q)

P� up2�(down1�P 1
4

 down3�P)

Q� up2�U
By the analysis in Example 1 we know that U

�
��3 down1�Q, thus U

down
��4 Q. Then it is

easy to see that down1�P �0 U and down3�P �0 U. It follows from the compositionality
of �0 that (down1�P 1

4

 down3�P) �0 U and furthermore P�

�0 Q�. ��

3 A Qualitative Probabilistic Logic

Let Var be a set of variables, ranged over by X. We define the set of formulae as follows:

� ::� tt � ff � ��	
w
(�1 p
 �2)� � � Act��w � ��0� p � [0� 1]

� �1 � �2 � �1 � �2 � X � min X� � � max X� �

The two fixpoint operators min X� � and max X� � act as binders in the standard manner;
we use �� to denote the set of closed formulae, that is containing no free variables. As
a shorthand, we write ��	

w
� for ��	

w
(� 1
 ��) for any ��.

Let !on denote the set of configurations, pairs �r� �	 where r � ��0 and � � �(S),
with S denoting the state space of some wMDP. Intuitively this represents a system
which has accumulated compensation r which it can use to satisfy formulae in the
future. A formula from �� determines a set of configurations, those which satisfy it;
their calculation is standard, apart from the novel qualitative possibility operator. An
environment � is a function that maps each variable in Var to a subset of !on. For a set
V � ��0 � �(S) and a variable X � Var, we write �[X "� V] for the environment that
maps X to V and Y to �(Y) for all Y � X. The semantics of a formula � is given by the
set of configurations ���� defined as follows:

www.manaraa.com

152 Y. Deng and M. Hennessy

– �tt�� � !on, �ff�� � #

– ��1 � �2�� � ��1�� $ ��2��, ��1 � �2�� � ��1�� � ��2��

– ���	
v
(�1 p
 �2)�� � � � r� � 	 � �

�
��w 	 where

� (r � w � v)� 	 	 � � r1� 	1 	 p
 � r2� 	2 	 and � ri� 	i 	 � ��i�� �
– �X�� � �(X)
– �min X� ��� �

�
�V � ����[X
�V] � V �

– �max X� ��� �
�
�V � V � ����[X
�V] �

When � is closed the set ���� is independent of the environment �, and in this case we
use the standard notation ! �� � in place of ! � ���.

The novel qualitative formula ��	
v
(�1 p
 �2) represents the ability to do an � action

with benefit at least v and then probabilistically satisfy the property �1 p
 �2; we have

�r� �	 �� ��	
v
(�1 p
 �2) whenever �

�
��w 	1 p
 	2 and �ri� 	i	 �� �i for some ri

satisfying (r � w � v) � p � r1 � (1 � p) � r2. Here there are two possibilities:

(i) v � w: here the compensation comes into play. The action may be accepted despite
being too heavy but the compensation for future use is reduced from r to r�(v�w);
this is split into r1� r2 via the probability p. Note this possibility will only exist if
r � (v � w) � 0.

(ii) v � w: The action is accepted and then the compensation is increased from r to
r � (w � v), which again is split proportionally into r1� r2, to satisfy �1 and �2

respectively.

Example 4. Both liveness and safety properties can be expressed in ��. For example,
suppose AB denote the formula �a	

0
(�b	

10
tt 9

10

 tt) and C is a configuration. Then

! �� AB means that C can perform an a action such that at least 90% of the time
it can subsequently perform a b action with a benefit of at least 10. So the formula

min X� �up	
0
(�down	

10
X 9

10

 tt) � �up	

0
X

expresses the liveness property of being able to perform a sequence of up actions to
arrive at a state where at least 90% of the time a down action for benefit at least 10 can
be performed. On the other hand, the formula

max X� �up	
0
(�down	

10
X 9

10

 tt) � �stay	

0
X

expresses the safety property of always being able to perform a stay action and at the
same time to perform an up action to arrive at a state where at least 90% of the time a
down action for benefit at least 10 can be performed. ��

Let ��(r� �) � � � � �� � �r� �	 �� � �. We have the following logical characterisation
of simulations.

Theorem 5 (Logical characterisation). In a bounded wMDP, s �r 	 if and only if
��(0� s) � ��(r�). ��

The proof of Theorem 5 exploits Theorem 3, which says that � can be approximated by
a family of stratified relations�k for k � �. So it suÆces to prove that each approximant
�

k is completely determined by the finite fragment of the qualitative probabilistic logic.
The import of Theorem 5 is that if s �r 	 does not hold then there is a formula � from

�� which s satisfies but 	 does not. Furthermore, it turns out that in a bounded wMDP
this distinguishing formula will always be finite; that is contains no occurrence of a

www.manaraa.com

Compositional Reasoning for MDPs 153

s

srsl

�3

1
4

3
4

�7�5

t

t2 t3

t4 t5

�2

3
4

1
4

�4�12

�4

(a) (b)

Fig. 2. Testing systems

fixpoint operator. For example, s2 ��0 s0, where these are defined in the Introduction,
because of the distinguishing formula �up	

1
(�down	

6
tt 1

4

 �down	

2
tt)�

Our logic is expressive enough so that the whole behaviour of a state in a bounded
wMDP can be captured by one formula in the logic:

Theorem 6 (Characteristic formula). In a bounded wMDP, for every state s there is
a characteristic formula �(s) � �� such that s �r 	 if and only if � r� 	 	 �� �(s). ��

For example, the state s1 in the Introduction has the following characteristic formula:
�(s1) � max X� �up	

2
(�down	

1
X 1

4

 �down	

3
X)�

4 Benefits Based Testing

Standard theories of testing involve the idea of applying tests to processes and seeing
if the result is a success. With the presence of weights in wMDPs we have a more
elementary way of testing; we run them in parallel with other wMDPs and calculate
the possible benefits which can be accrued. Then two wMDPs can be compared by
examining the resulting sets of possible accrued benefits.

Consider the simple fully probabilistic wMDP in Figure 2(a), which results from
running the test T � up1�down4� 0 in parallel with the system s1 from the Introduction.
Formally this is the sub-wMDP of the wMDP (s1 � T) obtained by concentrating on the
internal actions �w; this is just the wMDP represented by (s1 � T)�Act that we denote
by s1 �� T . Every time the experiment runs we get the initial benefit 3; three-quarters of
the time we also get the benefit 7 while a quarter of time we get 5. So the total benefit
is 3 � 3

4 � 7 � 1
4 � 5 � 9�5� In the presence of nondeterminism there will in general be a

set of possible benefits, depending on the way in which the nondeterminism is resolved.
Traditionally this resolution is expressed in terms of a scheduler, or adversary, which
for each state decides which of its successors is chosen for execution, with the resulting
set of benefits consequently depending on the choice of scheduler. Here we take a more
abstract approach, following [5], and essentially allow arbitrary schedulers.

Definition 8 (Extreme derivatives). For any � in a wMDP we write �
�
��%w if

– �
�
��w , that is is a hyper-derivative of �

– is stable, that is s
�
� for every s in �

www.manaraa.com

154 Y. Deng and M. Hennessy

where s
�
� means that s cannot enable any �-transition. We say is an extreme

derivative of �, with weight w. ��

Intuitively every extreme derivation�
�
��%w represents a computation from the initial

distribution � guided by some implicit scheduler. For example, consider the hyper-
derivation of an extreme derivative:

� � ��0 � ��0

��0
�
��w0 �

�
1 � ��1

��� (3)

��k
�
��wk �

�
k�1 � �

�
k�1

���

 �

��

k�0

��k

where w �
�

k�0 wk. Initially, since ��0 is stable, ��0 contains (in its support) all states
which can proceed with the computation. The implicit scheduler decides for each of

these states which step to take, cumulating in the first move, ��0
�
��w0 �

�
1 � ��1 . At an

arbitrary stage, ��k contains all states which can continue; the scheduler decides which
step to take for each individual state and the overall result of the schedulers decision for

this stage is captured in the step ��k
�
��wk �

�
k�1 � �

�
k�1.

Example 5. Referring to Figure 2(a) it is easy to see that s has a unique (degenerate)

extreme derivative, s1
�
��%9�5 (1

4 sl �
3
4 sr), intuitively representing the unique weighted

computation from s1. However, consider the wMDP in Figure 2(b), in which there is
a nondeterministic choice from state t2; here the extreme derivatives generated from t,
and their associated weights, will depend on the choices made during the computation
by the implicit scheduler.

First suppose that the scheduler uses the static policy which maps t2 to � 12� t4 	. Then

it is easy to see that the generated extreme derivative, which is degenerate, is t
�
��%12

(3
4 t4 � 1

4 t5). However using the static policy which maps t2 to � 4� t1 	 we generate, using
(3), a non-degenerate extreme derivative; after some calculations this can be seen to be

t1
�
��%24 t5.
However there are many other possible implicit schedulers, for example at di�erent

times in the computations employing either of these static policies, or even choosing
nondeterministically between them. But these are the only static policies and therefore

we know from Theorem 1 that if t1
�
��%w � then w must take the form p �12�(1� p) �24

for some 0 � p � 1. That is the set of benefits which can be generated from t1 is
� 24 � 12 � p � 0 � p � 1 �. ��

www.manaraa.com

Compositional Reasoning for MDPs 155

Definition 9 (May testing). In a wMDP, for any � � �(S), let

Benefits(�) � �w � ��0 � �
�
��%w � for some � �sub(S) �

Benefit sets are compared as follows:

B1 �
r
Ho B2 if for every r1 � B1 there exists some r2 � B2 such that r1 � r � r2

For any two distributions �� 	 we write � �r
may 	 if for every finite (testing) process T ,

Benefits(� �� T) �r
Ho Benefits(�� T). We write � �may 	 to mean that there is some

r � ��0 such that � �r
may 	. ��

This interpretation of processes is optimistic; � �r
may 	means that, given the investment

r, every possible benefit produced by � can in principle be improved upon by 	.
Note that in a bounded wMDP Benefits(�) cannot contain�. Moreover we can show

that the parallel composition of a bounded wMDP with a finite wMDP is also bounded.
This means that if we confine our attention to bounded wMDPs then benefit sets will
always only contain real numbers. One way of restricting to bounded wMDPS is, by
Theorem 2, to only use finitary convergent wMDPs.

Our first result shows that simulations can be used as a sound proof technique for
this semantics:

Theorem 7 (Soundness). � �r 	 implies � �r
may 	. ��

The converse is not true in general:

Example 6. Consider the two distributions � � 0 1
2

 a1� 0 and 	 � �2� 0 1

2

 a0� 0. It

is easy to see that � ��0 	 because there is no way to decompose 	 into 	1 1
2

 	2 for

some 	1� 	2 such that a1� 0 �0 	2. However, one can show that � �0
may 	. This follows

from the observations below:

(i) For all weights w and tests T , Benefits(�w� 0 �� T) � �v � w � v � Benefits(0 �� T)�.
(ii) For all weights w and tests T , Benefits(aw� 0 �� T) �w

Ho Benefits(a0� 0 �� T).

Both assertions can be proved by structural induction on T .
Now suppose w � Benefits(� �� T) for an arbitrary test T . There is some stable

derivative � such that � �� T
�
��w �. It can be shown that there are some w1�w2� �1� �2

with 0 �� T
�
��w1 �1, a1� 0 �� T

�
��w2 �2, w �

1
2 w1 �

1
2 w2, and � �

1
2 � �1 �

1
2 � �2,

where both �1 and �2 are stable. In other words, we have w1 � Benefits(0 �� T) and
w2 � Benefits(a1� 0 �� T). By (i) above, w1 � 2 � Benefits(�2� 0 �� T); by (ii) above, there
exists some w�

2 � Benefits(a0� 0 �� T) with w2 � w�
2 � 1. Thus, we can infer that

w �
1
2 w1 �

1
2 w2

� 1
2 (w1 � 2) � 1

2 (w2 � 1)
� 1

2 (w1 � 2) � 1
2 w�

2

It turns out that 1
2 (w1 � 2) � 1

2 w�
2 � Benefits(�� T). Therefore, we have

Benefits(� �� T) �0
Ho Benefits(�� T)�

Since this reasoning is carried out for an arbitrary test T , it follows that � �0
may 	. ��

www.manaraa.com

156 Y. Deng and M. Hennessy

Nevertheless we do have a testing characterisation for the unannotated simulation
preorder:

Theorem 8 (Testing characterisation). In a bounded wMDP, s �may 	 if and only if
s �sim 	.

Proof (Outline). One direction follows from Theorem 7. For the converse we carry out
the proof in two steps: we first prove that s �r

may 	 implies the existence of some
compensation r� � r with ��(0� s) � ��(r��), then appeal to Theorem 5. In the first
step we proceed by constructing, for each formula �, a characteristic test T (�), such
that if a process satisfies � then it passes test T (�) with some threshold benefit. ��

An alternative approach to testing would be to use one special action � in a test to
report success and when applying such a test to a system to report the weighted average
of the weight of each path leading to an occurrence of the success action; this we refer
to as expected benefits testing. Here we will not give the formal definition of how these
expected benefits are calculated, which is provided in [4], but simply give an informal
argument to show that our simulation preorder is not sound with respect to it.

Example 7 (Simulation is unsound for expected benefits testing). Consider the
following processes: P � �2�(0 1

4

 a0� 0)

Q � �1�(�2�(0 1
2

 a0� 0) 1

2

 a0� 0)

It is easy to see that P �0 Q as the transition P
�
��2 0 1

4

 a0� 0 can be simulated by the

hyper-derivative Q
�
��2 0 1

4

 a0� 0. Now let T be the test ā0��. Both P �� T and Q �� T

give rise to fully probabilistic wMDPs. The unique expected benefit resulted from P �� T
is 1

4 �0�
3
4 �2, i.e. 3

2 . On the other hand, the unique expected benefit obtained from Q �� T
is 1

2 � 1 �
1
2 (1

2 � 0 �
1
2 � 3), i.e. 5

4 . As � 3
2 � ��

0
Ho �

5
4 �, we have that P is not related to Q under

expected benefits may testing; thus � is unsound for expected benefits testing. Note that
if we consider total benefits, then Benefits(P �� T) � �2� � Benefits(Q �� T). ��

5 Concluding Remarks

We have proposed the model of weighted Markov decision processes for compositional
reasoning about the behaviour of systems with uncertainty. Amortised weighted sim-
ulation is coinductively defined to be a behavioural preorder for comparing di�erent
wMDPs. It is shown to be a precongruence relation with respect to all structural oper-
ators for constructing wMDPs from components. For finitary convergent wMDPs, we
have also given logical and testing characterisations of the simulation preorder: it can
be completely determined by a qualitative probabilistic logic and for each system we
can find a characteristic formula to capture its behaviour; the simulation preorder also
coincides with a notion of may testing preorder.

The dual of may testing is must testing. It would be interesting to investigate the
must preorder given by our testing approach. We leave it as future work to provide a
coinductive formulation of the preorder and study its logical characterisations.

www.manaraa.com

Compositional Reasoning for MDPs 157

There is a very limited literature on compositional theories of Markov decision pro-
cesses particularly in the presence of weights. There is however an extensive literature
on probabilistic variations of bisimulation equivalence for Markov chains; see Chapter
10 of [1] for an elementary introduction and [10] for a survey. Bisimulation equivalence
has also been defined in [8] for Interactive Markov Chains (IMCs), and it is shown to be
compositional, in the sense of our Theorem 4: it is preserved by the operators of a pro-
cess calculus interpreted as IMCs. Bisimulation and testing equivalence for Markovian
process algebras are also investigated in [9,2], but the analysis was mainly restricted to
models free of nondeterminism. Recently a combination of probabilistic automata and
IMCs has been studied in [7], where a notation of weak bisimulation is proposed. Since
time rates are treated essentially as action names, some intuitively equivalent processes
are di�erentiated by the weak bisimulation.

There is also an extensive literature on weighted automata [6], and probabilistic vari-
ations have also been studied [3]. However there the focus is on traditional language
theoretic issues, rather than our primary concern, compositionality.

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press (2008)
2. Bernardo, M., Cleaveland, R.: A Theory of Testing for Markovian Processes. In:

Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 305–319. Springer, Heidelberg
(2000)

3. Chatterjee, K., Doyen, L., Henzinger, T.A.: Probabilistic Weighted Automata. In: Bravetti, M.,
Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 244–258. Springer, Heidelberg
(2009)

4. Deng, Y., Hennessy, M.: Compositional reasoning for Markov decision processes (full
version) (2010), ����������	
���������
�����	��������������

5. Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C.: Testing Finitary Probabilistic Pro-
cesses. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 274–288.
Springer, Heidelberg (2009)

6. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. Springer,
Heidelberg (2009)

7. Eisentraut, E., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In:
Proc. LICS 2010, pp. 342–351. IEEE Computer Society (2010)

8. Hermanns, H. (ed.): Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg
(2002)

9. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University
Press (1996)

10. Jonsson, B., Larsen, K.G., Wang, Y.: Probabilistic Extensions of Process Algebras. In: Hand-
book of Process Algebra, pp. 685–710. Elsevier (2001)

11. Kiehn, A., Arun-Kumar, S.: Amortised Bisimulations. In: Wang, F. (ed.) FORTE 2005.
LNCS, vol. 3731, pp. 320–334. Springer, Heidelberg (2005)

12. Puterman, M.: Markov Decision Processes. Wiley (1994)
13. Rutten, J., Kwiatkowska, M., Norman, G., Parker, D.: Mathematical Techniques for Analyz-

ing Concurrent and Probabilistic Systems. American Mathematical Society (2004)
14. Segala, R.: Modeling and verification of randomized distributed real-time systems. Technical

Report MIT�LCS�TR-676, PhD thesis, MIT, Dept. of EECS (1995)

http://basics.sjtu.edu.cn/~yuxin/temp/mdp.pdf

www.manaraa.com

Safe Locking for Multi-threaded Java�

Einar Broch Johnsen, Thi Mai Thuong Tran, Olaf Owe, and Martin Steffen

Department of Informatics, University of Oslo, Norway
{einarj,tmtran,olaf,msteffen}@ifi.uio.no

Abstract. There are many mechanisms for concurrency control in high-level
programming languages. In Java, the original mechanism for concurrency con-
trol, based on synchronized blocks, is lexically scoped. For more flexible control,
Java 5 introduced non-lexical operators, supporting lock primitives on re-entrant
locks. These operators may lead to run-time errors and unwanted behavior; e.g.,
taking a lock without releasing it, which could lead to a deadlock, or trying to
release a lock without owning it. This paper develops a static type and effect sys-
tem to prevent the mentioned lock errors for non-lexical locks. The effect type
system is formalized for an object-oriented calculus which supports non-lexical
lock handling. Based on an operational semantics, we prove soundness of the ef-
fect type analysis. Challenges in the design of the effect type system are dynamic
creation of threads, objects, and especially of locks, aliasing of lock references,
passing of lock references between threads, and reentrant locks as found in Java.

1 Introduction

With the advent of multiprocessors, multi-core architectures, and distributed web-based
programs, effective parallel programming models and suitable language constructs are
needed. Many concurrency control mechanisms for high-level programming languages
have been developed, with different syntactic representations. One option is lexical
scoping; for instance, synchronized blocks in Java, or protected regions designated
by an atomic keyword. However, there is a trend towards more flexible concurrency
control where protected critical regions can be started and finished freely. Two pro-
posals supporting flexible, non-lexical concurrency control are lock handling via the
ReentrantLock class in Java 5 [13] and transactional memory, as formalized in Trans-
actional Featherweight Java (TFJ) [9]. While Java 5 uses lock and unlock operators
to acquire and release re-entrant locks, TFJ uses onacid and commit operators to start
and terminate transactions. Even if these proposals take quite different approaches to-
wards dealing with concurrency —“pessimistic” or lock-based vs. “optimistic” or based
on transactions— the additional flexibility of non-lexical control mechanisms comes at
a similar price: improper use leads to run-time exceptions and unwanted behavior.

A static type and effect system for TFJ to prevent unsafe usage of transactions was
introduced in [12]. This paper applies that approach to a calculus which supports lock

� The author list is written in alphabetical order. The work is partly funded by the EU
project FP7-231620 HATS: Highly Adaptable and Trustworthy Software using Formal Models
(http://www.hats-project.eu).

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 158–173, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

Safe Locking for Multi-threaded Java 159

handling as in Java 5. Our focus is on lock errors; i.e., taking a lock without releasing
it, which could lead to a deadlock, and trying to release a lock without owning it.

Generalizing our approach for TFJ to lock handling, however, is not straightforward:
In particular, locks are re-entrant and have identities available at the program level. Our
analysis technique needs to take identities into account to keep track of which lock is
taken by which thread and how many times it has been taken. Furthermore, the analysis
needs to handle dynamic lock creation, aliasing, and passing of locks between threads.
As transactions have no identity at program level and are not re-entrant, these problems
are absent in [12]. Fortunately, they can be solved under reasonable assumptions on
lock usage. In particular, aliasing can be dealt with due to the following observation:
for the analysis it is sound to assume that all variables are non-aliases, even if they may
be aliases at run-time, provided that, per variable, each interaction history with a lock is
lock error free in itself. This observation allows us to treat soundness of lock-handling
compositionally, i.e., individually per thread. So the contribution of the paper is a static
analysis preventing lock-errors for non-lexical use of re-entrant locks. A clear separa-
tion of local and shared memory allows the mentioned simple treatment of aliasing.

The paper is organized as follows. Sections 2 and 3 define the abstract syntax and
the operational semantics of our language with non-lexically scoped locks. Section 4
presents the type and effect system for safe locking, and Section 5 shows the correctness
of the type and effect system. Sections 6 and 7 conclude with related and future work.

2 A Concurrent, Object-Oriented Calculus

Consider a variant of Featherweight Java (FJ) [7] with concurrency and explicit lock
support, but without inheritance and type casts. Table 1 shows the abstract syntax of
this calculus. A program consists of a sequence 	D of class definitions.Vector notation
refers to a list or sequence of entities; e.g., 	D is a sequence D1, . . . ,Dn of class defini-
tions and	x a sequence of variables. A class definition class C(f :	T){	f :	T ; 	M} consists of
a name C, fields 	f with corresponding types 	T (assuming that all fi’s are different), and
method definitions 	M. Fields get values when instantiating an object; 	f are the formal
parameters of the constructor C. When writing 	f :	T (and in analogous situations) we as-
sume that the lengths of 	f and 	T correspond, and let fi : Ti refer to the i’th pair of field
and type. We omit such assumptions when they are clear from the context. For simplic-
ity, the calculus does not support overloading; each class has exactly one constructor
and all fields and methods defined in a class have different names. A method definition
m(x:	T){t} : T consists of a name m, the typed formal parameters	x:	T , the method body
t, and the declaration of the return type T . Types are class names C, (unspecified) basic
types B, and Unit for the unit value. Locks have type L, which corresponds to Java’s
Lock-interface, i.e., the type for instances of the class ReentrantLock.

The syntax distinguishes expressions e and threads t. A thread t is either a value v,
the terminated thread stop, error representing exceptional termination, or sequential
composition. The let-construct generalizes sequential composition: in let x:T = e in t,
e is first executed (and may have side-effects), the resulting value after termination is
bound to x and then t is executed with x appropriately substituted. (Standard sequen-
tial composition e;t is syntactic sugar for let x:T = e in t where x does not occur

www.manaraa.com

160 E.B. Johnsen et al.

Table 1. Abstract syntax

D ::= class C(f :	T){	f :	T ; 	M} class definitions
M ::= m(x:	T){t} : T methods

t ::= stop | error | v | let x:T = e in t threads
e ::= t |if v then e else e | v. f | v. f := v | v.m(v) | new C(v) expressions
| spawn t |new L | v. lock | v. unlock | if v. trylock then e else e

v ::= r | x | () values
T ::= C | B | Unit | L

free in t.) Values v are expressions that can not be evaluated further. We ignore stan-
dard values like booleans and integers, so values are references r, variables x (including
this), and the unit value (). We distinguish references o to objects and references l to
locks. This distinction is for notational convenience; the type system can distinguish
both kinds of references. Conditionals if v then e1 else e2, field access v. f , field up-
date v1. f := v2, method calls v.m(v) and object instantiation new C(v) are standard.
The language is multi-threaded: spawn t starts a new thread which evaluates t in par-
allel with the spawning thread. The expression new L dynamically creates a new lock,
like instantiating Java’s ReentrantLock class. The operations v. lock and v. unlock
denote lock acquisition and release. The conditional if v. trylock then e1 else e2

checks the availability of a lock v for the current thread, in which case v is taken.

3 Operational Semantics

The operational semantics of the calculus is split into steps at the local level of one
thread and at the global level. We focus here on global rules which concern more than
one sequential thread or lock-manipulating steps. See [10] for the full semantics. Local
configurations are written as σ � e and local reduction steps as σ � e−→ σ ′ � e′, where
σ is the heap, a finite mapping from references to objects and locks. Re-entrant locks
are needed for recursive method calls. A lock is either free (represented by the value 0),
or taken by a thread p (represented by p(n) for n≥ 1 where n specifies that p holds the
lock n times). A global configuration σ � P consists of a shared heap σ and a “set” of
processes, where the processes are given by the following grammar:

P ::= 0 | P ‖ P | p〈t〉 processes/named threads (1)

0 represents the empty process, P1 ‖ P2 the parallel composition of P1 and P2, and p〈t〉
a process (or named thread), where p is the process identity and t the thread being exe-
cuted. The binary ‖-operator is associative and commutative with 0 as neutral element.
Furthermore, thread identities must be unique. Global steps are of the form

σ � P−→ σ ′ � P′ . (2)

The corresponding rules are given in Table 2. Rule R-LIFT lifts the local reduction
steps to the global level and R-PAR expresses interleaving of the parallel composition

www.manaraa.com

Safe Locking for Multi-threaded Java 161

of threads. Spawning a new thread is covered in rule R-SPAWN. The new thread gets
a fresh identity and runs in parallel with the spawning thread. Rule R-NEWL creates
a new lock and extends the heap with a fresh identity l and the lock is initially free.
The lock can be taken, if it is free, or a thread already holding the lock can execute
the locking statement once more, increasing the lock-count by one (cf. R-LOCK1 and
R-LOCK2). The R-TRYLOCK-rules describe conditional lock taking. If the lock l is
available for a thread, the expression l. trylock evaluates to true and the first branch of
the conditional is taken (cf. the first two R-TRYLOCK-rules). Additionally, the thread
acquires the lock. If the lock is unavailable, the else-branch is taken and the lock is
unchanged (cf. R-TRYLOCK3). Unlocking works dually and only the thread holding
the lock can execute the unlock-statement on that lock. If the lock has value 1, the lock
is free afterwards, and with a lock count of 2 or larger, it is decreased by 1 in the step
(cf. R-UNLOCK1 and R-UNLOCK2). The R-ERROR-rules formalize misuse of a lock:
unlocking a non-free lock by a thread that does not own it or unlocking a free lock (cf.
R-ERROR1 and R-ERROR2). Both steps result in an error-term.

4 The Type and Effect System

A type and effect system combines rules for well-typedness with an effect part [1]. Here,
effects track the use of locks and capture how many times a lock is taken or released.
The underlying typing part is standard (the syntax for types is given in Table 1) and
ensures, e.g., that actual parameters of method calls match the expected types for that
method and that an object can handle an invoked method.

The type and effect system is given in Table 3 (for the thread local level) and Table 4
(for the global level). At the local level, the derivation system deals with expressions
(which subsume threads). Judgments of the form

Γ ;Δ1 � e : T :: Δ2[&v] (3)

are interpreted as follows: Under the type assumptions Γ , an expression e is of type T .
The effect part is captured by the effect or lock contexts: With the lock-status Δ1 before
the e, the status after e is given by Δ2. The typing contexts (or type environments) Γ
contain the type assumptions for variables; i.e., they bind variables x to their types, and
are of the form x1:T1, . . . ,xn:Tn, where we silently assume the xi’s are all different. This
way, Γ is also considered a finite mapping from variables to types. By dom(Γ) we refer
to the domain of that mapping and write Γ (x) for the type of variable x. Furthermore,
we write Γ ,x:T for extending Γ with the binding x:T , assuming that x /∈ dom(Γ). To
represent the effects of lock-handling, we use lock environments (denoted by Δ). At the
local level of one single thread, the lock environments are of the form v1:n1, . . . ,vk:nk,
where a value vi is either a variable xi or a lock reference li, but not the unit value.
Furthermore, all vi’s are assumed to be different. The natural number ni represents the
lock status, and is either 0 in case the lock is marked as free, or n (with n≥ 1) capturing
that the lock is taken n times by the thread under consideration. We use the same no-
tations as for type contexts, i.e., dom(Δ) for the domain of Δ , further Δ(v) for looking
up the lock status of the lock v in Δ , and Δ ,v:n for extending Δ with a new bind-
ing, assuming v /∈ dom(Δ). We write • for the empty context, containing no bindings.

www.manaraa.com

162 E.B. Johnsen et al.

Table 2. Global semantics

σ � t −→ σ ′ � t ′
R-LIFT

σ � p〈t〉 −→ σ ′ � p〈t ′〉

σ � P1 −→ σ ′ � P′1
R-PAR

σ � P1 ‖ P2 −→ σ ′ � P′1 ‖ P2

p′ fresh
R-SPAWN

σ � p〈let x:T =spawn t ′ in t〉 −→ σ � p〈let x : T = () in t〉 ‖ p′〈t ′〉
l /∈ dom(σ) σ ′ = σ [l 	→0]

R-NEWL
σ � p〈let x:T =new L in t〉 −→ σ ′ � p〈let x:T = l in t〉

σ(l) = 0 σ ′ = σ [l 	→ p(1)]
R-LOCK1

σ � p〈let x : T = l. lock in t〉 −→ σ ′ � p〈let x : T = l in t〉
σ(l) = p(n) σ ′ = σ [l 	→ p(n+1)]

R-LOCK2
σ � p〈let x : T = l. lock in t〉 −→ σ ′ � p〈let x : T = l in t〉

σ(l) = 0 σ ′ = σ [l 	→ p(1)]
R-TRYLOCK1

σ � p〈let x : T =if l. trylock then e1 else e2 in t〉 −→ σ ′ � p〈let x : T = e1 in t〉
σ(l) = p(n) σ ′ = σ [l 	→ p(n+1)]

R-TRYLOCK2
σ � p〈let x : T =if l. trylock then e1 else e2 in t〉 −→ σ ′ � p〈let x : T = e1 in t〉

σ(l) = p′(n) p �= p′
R-TRYLOCK3

σ � p〈let x : T =if l. trylock then e1 else e2 in t〉 −→ σ � p〈let x : T = e2 in t〉
σ(l) = p(1) σ ′ = σ [l 	→0]

R-UNLOCK1
σ � p〈let x : T = l. unlock in t〉 −→ σ ′ � p〈let x : T = l in t〉

σ(l) = p(n+2) σ ′ = σ [l 	→ p(n+1)]
R-UNLOCK2

σ � p〈let x : T = l. unlock in t〉 −→ σ ′ � p〈let x : T = l in t〉
σ(l) = p′(n) p �= p′

R-ERROR1
σ � p〈let x : T = l. unlock in t〉 −→ σ � p〈error〉

σ(l) = 0
R-ERROR2

σ � p〈let x : T = l. unlock in t〉 −→ σ � p〈error〉

A lock context Δ corresponds to a local view on the heap σ in that Δ contains the
status of the locks from the perspective of one thread, whereas the heap σ in the global
semantics contains the status of the locks from a global perspective. See also Definition
3 of projection later, which connects heaps and lock contexts. The final component of
the judgment from Equation 3 is the value v after the &-symbol. If the type T of e is the
type L for lock-references, type effect system needs information in which variable resp.
which lock reference is returned. If T �= L, that information is missing; hence we write
[&v] to indicate that it’s “optional”. In the following we concentrate mostly on the rules
dealing with locks, and therefore with an &v-part in the judgment.

www.manaraa.com

Safe Locking for Multi-threaded Java 163

At run-time, expressions do not only contain variables (and the unit value) as values
but also references. They are stored in the heap σ . To check the well-typedness of
configurations at run-time, we extend the type and effect judgment from Equation 3 to

σ ;Γ ;Δ1 � e : T :: Δ2[&v] (4)

The rules of Table 3 are mostly straightforward. We concentrate on the rules relevant
for lock handling, the full set of rules is shown in [10]. To define the rules, we need two
additional auxiliary functions. We assume that the definition of all classes is given. As
this information is static, we do not explicitly mention the corresponding “class table”
in the rules; relevant information from the class definitions is referred to in the rules by
�C : 	T →C (the constructor of class C takes parameters of types 	T as arguments; the
“return type” of the constructor corresponds to C), �C.m : 	T → T :: Δ1→ Δ2 (method
m of class C takes input of type 	T and returns a value of type T). Concerning the effects,
the lock status of the parameters must be larger or equal as specified in the pre-condition
Δ1, and the effect of method m is the change from Δ1 to Δ2. Similarly, �C. f : T means
that the field f of instances of class C is of type T . Because fields simply contain values,
they have no effect.

Values have no effect and thus Δ1 = Δ2 (cf. the rule T-VAL). A conditional expression
is well-typed with type T if the conditional expression is a boolean and if both branches
have the common type T . Also for the effect, rule T-COND insists that both branches
are well-typed with the same pre- and post-condition. Field update in rule T-ASSIGN

has no effect, and the type of the field must coincide with the type of the value on the
right-hand side of the update.

For looking up a field containing a lock reference (cf. T-FIELD), the local variable
used to store the reference is assumed with a lock-counter of 0. Rule T-LET, dealing
with the local variable scopes and sequential composition, requires some explanation.
First, it deals only with the cases not covered by T-NEWL or T-FIELD, which are ex-
cluded by the first premise. The two recursive premises dealing with the sub-expressions
e and t basically express that the effect of e precedes the one for t: The post-condition
Δ2 of e is used in the pre-condition when checking t, and the post-condition Δ3 after t
in the premise then yields the overall postcondition in the conclusion. Care, however,
needs to be taken in the interesting situation where e evaluates to a lock reference: In this
situation the lock can be referenced in t by the local variable x or by the identifier which
is handed over having evaluated e, i.e., via v′ in the rule. Note that the body is analysed
under the assumption that originally x, which is an alias of v′, has the lock-counter 0.
The last side condition deals with the fact that after executing e, only one lock reference
can be handed over to t, all others have either been existing before the let-expression or
become “garbage” after e, since there is no way in t to refer to them. To avoid hanging
locks, the rule therefore requires that all lock values created while executing e must end
free, i.e., they must have a lock count of 0 in Δ2. This is formalized in the predicate
FE(Δ1,Δ2,v) in the rule’s last premise where FE(Δ1,Δ2,v) holds if Δ2 = Δ ′1,	v:	0,v:n
for some Δ ′1 such that dom(Δ ′1) = dom(Δ1) or dom(Δ ′1,v:n) = dom(Δ1).

As for method calls in rule T-CALL, the premise � C.m : 	T → T :: Δ ′1 → Δ ′2 spec-
ifies 	T → T as the type of the method and Δ ′1 → Δ ′2 as the effect; this corresponds to
looking up the definition of the class including their methods from the class table. To be

www.manaraa.com

164 E.B. Johnsen et al.

well-typed, the actual parameters must be of the required types 	T and the type of the
call itself is T , as declared for the method. For the effect part, we can conceptually think
of the pre-condition Δ ′1 of the method definition as the required lock balances and Δ1

the provided ones at the control point before the call. For the post-conditions, Δ ′2 can be
seen as the promised post-condition and Δ2 the actual one. The premise Δ1 ≥ Δ ′1[v/	x]
of the rule requires that the provided lock status of the locks passed as formal param-
eters must be larger or equal to those required by the precondition Δ ′1 declared for
the method. The lock status after the method is determined by adding the effect (as
the difference between the promised post-condition and the required pre-condition) to
the provided lock status Δ1 before the call. In the premises, we formalize those checks
and calculations as follows:

Definition 1. Assume two lock environments Δ1 and Δ2. The sum Δ1 + Δ2 is defined
point-wise, i.e., Δ = Δ1 + Δ2 is given by: Δ � v : n1 + n2 if Δ1 � v : n1 and Δ2 � v : n2.
If Δ1 � v : n1 and Δ2 �� v then Δ � v : n1, and dually Δ � v : n2, when Δ1 �� v and
Δ2 � v : n2. The comparison of two contexts is defined point-wise, as well: Δ1 ≥ Δ2

if dom(Δ1) ⊇ dom(Δ2) and for all v ∈ dom(Δ2), we have n1 ≥ n2, where Δ1 � v : n1

and Δ2 � v : n2. The difference Δ1− Δ2 is defined analogously. Furthermore we use
the following short-hand: for v ∈ dom(Δ), Δ + v denotes the lock context Δ ′, where
Δ ′(v) = 1 if Δ(v) = 0, and Δ ′(v) = n + 1, if Δ(v) = n. Δ − v is defined analogously.

For the effect part of method specifications C.m :: Δ1 → Δ2, the lock environments
Δ1 and Δ2 represent the pre- and post-conditions for the lock parameters. We have to
be careful how to interpret the assumptions and commitments expressed by the lock
environments. As usual, the formal parameters of a method have to be unique; it’s
not allowed that a formal parameter occurs twice in the parameter list. Of course, the
assumption of uniqueness does not apply to the actual parameters; i.e., at run-time,
two different actual parameters can be aliases of each other. The consequences of that
situation are discussed in the next example.

Example 1 (Method parameters and aliasing). Consider the following code:

Listing 1.1. Method with 2 formal parameters

m(x1 : L , x2 : L) {
x1 . un lock ; x2 . un lock

}

Method m takes two lock parameters and performs a lock-release on each one. As for
the effect specification, the precondition Δ1 should state that the lock stored in x1 should
have at least value 1, and the same for x2, i.e.,

Δ1 = x1:1,x2:1 (5)

With Δ1 as pre-condition, the effect type system accepts the method of Listing 1.1 as
type correct, because the effects on x1 and x2 are checked individually. If at run-time the
actual parameters, say l1 and l2 happen to be not aliases, and if each of them satisfies
the precondition of Equation 5 individually, i.e., at run-time, the lock environment Δ ′1 =
Δ1[l1/x1][l2/x2] i.e.,

Δ ′1 = l1:1, l2:1 (6)

www.manaraa.com

Safe Locking for Multi-threaded Java 165

executing the method body does not lead to a run-time error. If, however, the method is
called such that x1 and x2 become aliases, i.e., called as o.m(l, l), where the lock value
of l is 1, it results in a run-time error. That does not mean that the system works only if
there is no aliasing on the actual parameters. The lock environments express resources
(the current lock balance) and if x1 and x2 happen to be aliases, the resources must be
combined. This means that if we substitute in Δ1 the variables x1 and x2 by the same
lock l, the result of the substitution is

Δ ′1 = Δ1[l/x1][l/x2] = l:(1 + 1)

i.e., l is of balance 2. ��
This motivates the following definition of substitution for lock environments.

Definition 2 (Substitution for lock environments). Given a lock environment Δ of
the form Δ = v1:n1, . . . ,vk:nk, with k≥ 0, and all the natural numbers ni ≥ 0. The result
of the substitution of a variable x by a value v in Δ is written Δ [v/x] and defined as
follows. Let Δ ′ = Δ [v/x]. If Δ = Δ ′′,v:nv,x:nx, then Δ ′ = Δ ′′,v:(nv +nx). If Δ = Δ ′′,x:n
and v /∈ dom(Δ ′′), then Δ ′ = Δ ′′,v:n. Otherwise, Δ ′ = Δ .

Example 2 (Aliasing). The example continues from Example 1, i.e., we are given the
method definition of Listing 1.1. Listing 1.2 shows the situation of a caller of m where
first, the actual parameters are without aliases. Before the call, each lock (stored in the
fields f1 and f2) has a balance of 1, as required in m’s precondition, and the method
body individually unlocks each of them once.

Listing 1.2. Method call, no aliasing

f1 := new L ;
f2 := new L ; / / f1 and f2 : no a l i a s e s
f1 . l o c k ; f2 . l o c k ;
o .m(f1 , f2) ;

If we change the code of the call site by making f1 and f2 aliases, setting f2 := f1 in the
second line, instead of f2 :=new L, again there is no run-time error, as after executing
f1. lock and f2. lock, the actual balance of the single lock stored in f1 as well as in f2

is 2. ��
Why aliasing f1 and f2 in the situation of Example 2 is unproblematic is illustrated
in Figure 1. Figures 1(a) and 1(b) show the change of two different locks over time,
where the y-axis represents the lock balance. The behavior of each lock is that it starts
at a lock-count of zero, counts up and down according to the execution of lock and
unlock and at the end reaches 0 again. It is important that at no point in time the lock
balance can be negative, as indicated by the red, dashed arrow in the left sub-figure.

Connecting the figures to the example above, the two lock histories correspond to
the situation of Listing 1.2 where f1 and f2 are no aliases. When they are aliases, the
overall history looks as shown in Figure 1(c). This combined history, clearly, satisfies
the mentioned condition for a lock behavior: it starts and ends with a lock balance of
0 and it never reaches a negative count as it is simply the “sum” of the individual lock
histories.

www.manaraa.com

166 E.B. Johnsen et al.

The identity of a new thread is irrelevant, i.e., spawning carries type Unit (cf.
T-SPAWN). Note for the effect part of T-SPAWN that the pre-condition for checking
the thread t in the premise of the rule is the empty lock context •. The reason is that
the new thread starts without holding any lock. Note further that for the post-condition
of the newly created thread t, all locks that may have been acquired while executing
t must have been released again; this is postulated by Δ ′ � free. Typing for new locks
is covered by T-NEWL. As for the effect, the pre-context Δ1 is extended by a bind-
ing for the new lock initially assumed to be free, i.e., the new binding is x:0. The two
operations for acquiring and releasing a lock carry the type L. The type rules here are
formulated on the thread-local level, i.e., irrespective of any other thread. Therefore, the
lock contexts also contain no information about which thread is currently in possession
of a non-free lock, since the rules are dealing with one local thread only. The effect of
taking a lock is unconditionally to increase the lock counter in the lock context by one
(cf. Definition 1). Dually in rule T-UNLOCK, Δ − v decreases v’s lock counter by one.
To do so safely, the thread must hold the lock before the step, as required by the premise
Δ � v : n+1. The expression for tentatively taking a lock is a two-branched conditional.
The first branch e1 is executed if the lock is held, the second branch e2 is executed if
not. Hence, e1 is analysed in the lock context Δ1 + v as precondition, whereas e2 uses
Δ1 unchanged (cf. T-TRYLOCK). As for ordinary conditionals, both branches coincide
concerning their type and the post-condition of the effects, which in turn also are the
type, resp. the post-condition of the overall expression.

The type and effect system in Table 3 dealt with expressions at the local level, i.e.,
with expression e and threads t of the abstract syntax of Table 1. We proceed analysing
the language “above” the level of one thread, and in particular of global configurations
as given in Equation 1.

The effect system at the local level uses lock environments to approximate the effect
of the expression on the locks (cf. Equation 4). Lock environments Δ are thread-local
views on the status of the locks, i.e., which locks the given thread holds and how often.
In the reduction semantics, the locks are allocated in the (global) heap σ , which contains
the status of all locks (together with the instance states of all allocated objects). The
thread-local view can be seen as a projection of the heap to the thread, as far as the
locks are concerned. This projection is needed to connect the local part of the effect
system to the global one (cf. T-THREAD of Table 4).

balance

t

(a) Lock 1

balance

t

(b) Lock 2

balance

t

(c) Combined 1 + 2

Fig. 1. Two lock histories

www.manaraa.com

Safe Locking for Multi-threaded Java 167

Table 3. Type and effect system (thread-local)

σ ;Γ � v : L Δ � v
T-VAL

σ ;Γ ;Δ � v : L :: Δ&v

σ ;Γ � v : Bool σ ;Γ ;Δ1 � e1 : T :: Δ2&v σ ;Γ Δ1 � e2 : T :: Δ2&v
T-COND

σ ;Γ ;Δ1 �if v then e1 else e2 : T :: Δ2&v

σ ;Γ � v′ : C �C. f : L σ ;Γ ,x:L;Δ1,x:0 � t : T :: Δ2&v
T-FIELD

σ ;Γ ;Δ1 �let x : L= v′. f in t : T :: Δ2&v

σ ;Γ ;Δ � v1 : C :: Δ �C. fi : Ti σ ;Γ ;Δ � v2 : Ti :: Δ&v2

T-ASSIGN
σ ;Γ ;Δ � v1. f := v2 : Ti :: Δ&v2

e /∈ {new L, v. f} σ ;Γ ;Δ1 � e : T1 :: Δ2&v′ (σ ;Γ ,x:T1;Δ2,x:0 � t : T2 :: Δ3&v′′)[v′/x] FE(Δ1,Δ2,v′)
T-LET

σ ;Γ ;Δ1 �let x : T1 = e in t : T2 :: Δ3[v′/x]&v′′ [v′/x]

�C.m = λ	x.t σ ;Γ �	v : 	T σ ;Γ � v : C �C.m : 	T → T :: Δ ′1 → Δ ′2
Δ1 ≥ Δ ′1[v/	x] Δ2 = Δ1 +(Δ ′2−Δ ′1)[v/	x] T �= L

T-CALL
σ ;Γ ;Δ1 � v.m(v) : T :: Δ2

σ ;Γ ,x:L;Δ1,x:0 � t : T :: Δ2&v
T-NEWL

σ ;Γ ;Δ1 �let x:L =new L in t : T :: Δ2&v

σ ;Γ ;• � t : T :: Δ ′ Δ ′ � free
T-SPAWN

σ ;Γ ;Δ �spawn t : Unit:: Δ

Δ � v σ ;Γ � v : L
T-LOCK

σ ;Γ ;Δ � v. lock: L :: Δ + v&v

Δ � v : n+1 σ ;Γ � v : L
T-UNLOCK

σ ;Γ ;Δ � v. unlock: L :: Δ − v&v

σ ;Γ � v : L σ ;Γ ;Δ1 + v � e1 : T :: Δ2&v′ σ ;Γ ;Δ1 � e2 : T :: Δ2&v′
T-TRYLOCK

σ ;Γ ;Δ1 �if v. trylock then e1 else e2 : T :: Δ2&v′

Definition 3 (Projection). Assume a heap σ with σ �ok and a thread p.1 The projec-
tion of σ onto p, written σ ↓p is inductively defined as follows:

• ↓p = •
(σ , l:0) ↓p = σ ↓p, l:0

(σ , l:p(n)) ↓p = σ ↓p, l:n
(σ , l:p′(n)) ↓p = σ ↓p, l:0 if p �= p′
(σ ,o:C(v)) ↓p = σ ↓p .

Note the case where a lock l is held by a thread named p′ different from the thread
p we project onto, the projection makes l free, i.e., l:0. At first sight, it might look
strange that the locks appears to be locally free where it is actually held by another
thread. The reason is that the type system captures a safety property about the locks
and furthermore that locks ensure mutual exclusion between threads. Safety means that
the effect type system gives, as usual, no guarantee that the local thread can actually
take the lock, it makes a statement about what happens after the thread has taken the
lock. If the local thread can take the lock, the lock must be free right before that step.
The other aspect, namely mutual exclusion, ensures that for the thread that has the lock,

1 Cf. the technical report [10] for the standard definition of σ �ok.

www.manaraa.com

168 E.B. Johnsen et al.

the effect system calculates the balance without taking the effect of other thread into
account. This reflects the semantics as the locks of course guarantee mutual exclusion.
As locks are manipulated only via l. lock and l. unlock, there is no interference by
other threads, which justifies the local, compositional analysis.

Now to the rules of Table 4, formalizing judgments of the form

σ � P : ok , (7)

where P is given as in Equation 1. In the rules, we assume that σ is well-formed,
i.e., σ � ok. The empty set of threads or processes 0 is well-formed (cf. T-EMPTY).
Well-typedness is a “local property” of threads, i.e., it is compositional: a parallel com-
position is well-typed if both sub-configurations are (cf. T-PAR). A process p〈t〉 is well-
typed if its code t is (cf. T-THREAD). As precondition Δ1 for that check, the projection
of the current heap σ is taken. . As for the post-condition Δ2, we require that the thread
has given back all the locks, postulated by Δ2 � free. The remaining rules do not deal
with run-time configurations σ � P, but with the static code as given in the class dec-
larations/definitions. Rule T-METH deals with method declarations. The first premise
looks up the declaration of method m in the class table. The declaration contains, as
usual, the argument types and the return type of the method. Beside that, the effect
specification Δ1→ Δ2 specifies the pre- and post-condition on the lock parameters. We
assume that the domain of Δ1 and Δ2 correspond exactly to the lock parameters of the
method. The second premise then checks the code of the method body against that spec-
ification. So t is type-checked, under a type and effect context extended by appropriate
assumptions for the formal parameters	x and by assuming type C for the self-parameter
this. Note that the method body t is checked with an empty heap • as assumption.
As for the post-condition Δ2,Δ ′2 of the body, Δ ′2 contains lock variables other than the
formal lock parameters (which are covered by Δ2). The last premise requires that the
lock counters of Δ ′2 must be free after t. The role of the lock contexts as pre- and post-
conditions for method specifications and the corresponding premises of rule T-CALL

are illustrated in Figure 2. Assume two methods m and n, where m calls n, i.e., m is
of the form m(){. . . ;x.n() . . .}. Let’s assume the methods operate on one single lock,
whose behavior is illustrated by the first two sub-figures of Figure 2.

The history in Figure 2(a) is supposed to represent the lock behavior m up to the point
where method n is called, and Figure 2(b) gives the behavior of n in isolation. The net
effect of method n is to decrease the lock-count by one (indicated by the dashed arrow),
namely by unlocking the lock twice but locking it once afterwards again. It is not good
enough as a specification for method n to know that the overall effect is a decrease by
one. It is important that at the point where the method is called, the lock balance must be
at least 2. Thus, the effect specification is Δ1→ Δ2, where Δ1 serves as precondition for
all formal lock parameters of the method, and T-CALL requires current lock balances
to be larger or equal to the one specified. The type system requires that the locks are
handed over via parameter passing and the connection between the lock balances of
the actual parameters with those of the formal ones is done by the form of substitution
given in Definition 2. The actual value of the lock balances after the called method n is
then determined by the lock balances before the call plus the net-effect of that method.
See Figure 2(c) for combining the two histories of Figures 2(a) and 2(b). Finally, a class

www.manaraa.com

Safe Locking for Multi-threaded Java 169

definition class C(f :	T){	f :	T ; 	M} is dealt with in rule T-CLASS, basically checking that
all method definitions are well-typed. For a program (a sequence of class definitions) to
be well-typed, all its classes must be well-typed (we omit the rule).

5 Correctness

We prove the correctness of our analysis. A crucial part is subject reduction, i.e., the
preservation of well-typedness under reduction. (The full proofs can be found in [10].)

Next we prove subject reduction for the effect part of the system of Tables 3 and 4.

Lemma 1 (Substitution). Let x be a variable of type L and l be a lock reference If
Δ1 � t :: Δ2&v, then Δ1[l/x] � t[l/x] :: Δ2[l/x]&v[l/x].

The next lemma expresses that given a lock environment Δ1 as precondition for an
expression e such that the effect of e leads to a post-condition of Δ2, e is still well-
typed if we assume a Δ ′1 where the lock balances are increased, and the corresponding
post-condition is then increased accordingly.

Lemma 2 (Weakening). If Δ1 � e :: Δ2, then Δ1 + Δ � e :: Δ2 + Δ .

Lemma 3 (Subject reduction (local)). Let σ � t be well-typed. Assume further Δ1 �
t :: Δ2&v where Δ1 = σ ↓p for a thread identifier p and Δ2 � free. If σ � t −→ σ ′ � t ′,
then Δ ′1 � t ′ :: Δ ′2&v′, with Δ ′1 = σ ↓p and with Δ ′2 � free.

Lemma 4 (Subject reduction (global)). If σ � P : ok and σ � P−→ σ ′ � P′ where the
reduction step is not one of the two R-ERROR-rules, then σ ′ � P′ : ok.

Lemma 5. Let P = P′ ‖ p〈t〉. If σ � P : ok then σ � P �−→ σ � P′ ‖ p〈error〉.
The next result captures one of the two aspects of correct lock handling, namely that
never an exception is thrown by inappropriately unlocking a lock.

Theorem 1 (Well-typed programs are lock-error free). Given a program in its initial
configuration • � P0 : ok. Then it’s not the case that • � P0 −→∗ σ ′ � P ‖ p〈error〉.

balance

t

(a) Method m

balance

t

(b) Method n

balance

t

(c) Method n

Fig. 2. Lock balance of methods m and n

www.manaraa.com

170 E.B. Johnsen et al.

The second aspect of correct lock handling means that a thread should release all locks
before it terminates. We say, a configuration σ �P has a hanging lock if P = P′ ‖ p〈stop
〉 where σ(l) = p(n) with n≥ 1, i.e., one thread p has terminated but there exists a lock
l still in possession of p.

Theorem 2 (Well-typed programs have no hanging locks). Given a program in its
initial configuration • � P0 : ok. Then it’s not the case that • � P0 −→∗ σ ′ � P′, where
σ ′ � P′ has a hanging lock.

6 Related Work

Our static type and effect system ensures proper usage of non-lexically scoped locks in
a concurrent object-oriented calculus to prevent run-time errors and unwanted behav-
iors. As mentioned, the work presented here extends our previous work [12], dealing
with transactions as a concurrency control mechanism instead of locks. The extension
is non-trivial, mainly because locks have user-level identities. This means that, unlike
transactions, locks can be passed around, can be stored in fields, and in general alias-
ing becomes a problem. Furthermore, transactions are not “re-entrant”. See [11] for a
more thorough discussion of the differences. There are many type systems and formal
analyses to catch already a compile time various kinds of errors. For multi-threaded
Java, static approaches so far are mainly done to detect data races or to guarantee free-
dom of deadlocks, of obstruction or of livelocks, etc. There have been quite a number
of type-based approaches to ensure proper usage of resources of different kinds (e.g.,
file access, i.e., to control the opening and closing of files). See [6] for a recent, rather
general formalization for what the authors call the resource usage analysis problem (the
paper discusses approaches to safe resource usage in the literature). Unlike the type
system proposed here, [6] considers type inference (or type reconstruction). Their lan-
guage, a variant of the λ -calculus, however, is sequential. [15] uses a type and effect
system to assure deadlock freedom in a calculus quite similar to ours in that it supports
thread based concurrency and a shared mutable heap. On the surface, the paper deals
with a different problem (deadlock freedom) but as part of that it treats the same prob-
lem as we, namely to avoind releasing free locks or locks not owned, and furthermore,

Table 4. Type and effect system (global)

T-EMPTY
σ � 0 : ok

σ � P1 : ok σ � P2 : ok
T-PAR

σ � P1 ‖ P2 : ok

∀i. �Mi : ok
T-CLASS

�C(f :	T){	f :	T ; 	M} : ok

Δ1 = σ ↓p σ ;•;Δ1 � t : T :: Δ2 t �= error Δ2 � free
T-THREAD

σ � p〈t〉 :ok

�C.m : 	T → T :: Δ1 → Δ2 •;	x:	T ,this:C;Δ1 � t : T :: Δ2,Δ ′2 Δ ′2 � free
T-METH

�C.m(x:	T){t} : ok

www.manaraa.com

Safe Locking for Multi-threaded Java 171

do not leave any locks hanging. The language of [15] is more low-level in that it sup-
ports pointer dereferencing, whereas our object-oriented calculus allows shared access
on mutable storage only for the fields of objects and especially we do not allow pointer
dereferencing. Pointer dereferencing makes the static analysis more complex as it needs
to keep track of which thread is actually responsible for lock-releasing in terms of read
and write permissions. We do not need the complicated use of ownership-concepts, as
our language is more disciplined dealing with shared access: we strictly separate be-
tween local variables (not shared) and shared fields. In a way, the content of a local
variable is “owned” by a thread; therefore there is no need to track the current owner
across different threads to avoid bad interference. Besides that, our analysis can han-
dle re-entrant locks, which are common in object-oriented languages such as Java or
C
, whereas [15] covers only binary locks. The same restriction applies to [16], which
represents a type system assuring race-freedom. Gerakios et.al. [5] present a uniform
treatment of region-based management and locks. A type and effect system guarantees
the absence of memory access violations and data races in the presence of region alias-
ing. The main subject in their work is regions, however, not locks. Re-entrant locks
there are just used to protect regions, and they are implicit in the sense that each lock
is associated with a region and has no identity. The regions, however, have an identity,
they are non-lexically scoped and can be passed as arguments. The safety of the region-
based management is ensured by a type and effect system, where the effects specify
so-called region capabilities. Similar to our lock balances, the capabilities keep track of
the “status” of the region, including a count on how many times the region is accessed
and a lock count. As in our system, the static analysis keeps track of those capabilities
and the soundness of the analysis is proved by subject reduction (there called “preser-
vation”). [4] uses “flow sensitive” type qualifiers to statically correct resource usage
such as file access in the context of a calculus with higher-order functions and mutable
references. Also the Vault system [3] uses a type-based approach to ensure safe use of
resources (for C-programs).

Laneve et. al. [2] develop a type system for statically ensuring proper lock handling
also for the JVM, i.e., at the level of byte code as part of Java’s bytecode verifier. Their
system ensures what is known as structured locking, i.e., (in our terminology), each
method body is balanced as far as the locks are concerned, and at no point, the balance
reaches below 0. As the work does not consider non-lexical locking as in Java 5, the
conditions apply per method only. Extending [14], Iwama and Kobayashi [8] present a
type system for multi-threaded Java programs on the level of the JVM which deals with
non-lexical locking. Similar to our system, the type system guarantees absence of lock
errors (as we have called it), i.e., that when a thread is terminated, it has released all
its acquired locks and that a thread never releases a lock it has not previously acquired.
Unlike our system, they cannot deal with method calls, i.e., the system analyses method
bodies in isolation. However, they consider type inference.

7 Conclusion

We presented a static type and effect system to prevent certain errors for non-lexical lock
handling as in Java 5. The analysis was formalized in an object-oriented calculus in the

www.manaraa.com

172 E.B. Johnsen et al.

style of FJ. We proved the soundness of our analysis by subject reduction. Challenges
for the static analysis addressed by our effect system are the following: with dynamic
lock creation and passing of lock references, we face aliasing of lock references, and
due to dynamic thread creation, the effect system needs to handle concurrency.

Aliasing is known to be tricky for static analysis; many techniques have been devel-
oped to address the problem. Those techniques are known as alias or pointer analyses,
shape analyses, etc. With dynamic lock creation and since locks are meant to be shared,
one would expect that a static analysis on lock-usage relies on some form of alias anal-
ysis. Interestingly, aliasing poses no real challenge for the specific problem at hand,
under suitable assumptions on the use of locks and lock variables. The main assump-
tion restricts passing the lock references via instance fields. Note that to have locks
shared between threads, there are basically only two possible ways: hand over the iden-
tity of a lock via the thread constructor or via an instance field: it’s not possible to hand
the lock reference to another thread via method calls, as calling a method continues
executing in the same thread. Our core calculus does not support thread constructors,
as they can be expressed by ordinary method calls, and because passing locks via fields
is more general and complex: passing a lock reference via a constructor to a new thread
means locks can be passed only from a parent to a child thread. The effect system then
enforces a single-assignment policy on lock fields. The analysis also shows that this
restriction can be relaxed in that one allows assignment concerning fields whose lock
status corresponds to a free lock. Concerning passing lock references within one thread,
parameter passing must be used. The effect specification of the formal parameters con-
tains information about the effect of the lock parameters. We consider the restriction not
to re-assign a lock-variable as a natural programming guideline and common practice.

Like aliasing, concurrency is challenging for static analysis, due to interference. Our
effect system checks the effect of interacting locks, which are some form of shared vari-
ables. An interesting observation is that locks are, of course not just shared variables,
but they synchronize threads for which they ensure mutual exclusion. Ensuring absence
of lock errors is thus basically a sequential problem, as one can ignore interference; i.e.,
a parallel program can be dealt with compositionally. See the simple, compositional rule
for parallel composition in Table 4. The treatment is similar to the effect system for TFJ
dealing with transactions instead of locks. However, in the transactional setting, the
local view works for a different reason, as transactions are not shared between threads.

The treatment of the locks here is related to type systems governing resource usage.
We think that our technique in this paper and a similar one used in our previous work
could be applied to systems where run-time errors and unwanted behaviors may happen
due to improperly using syntactical constructs for, e.g., opening/closing files, allocat-
ing/deallocating resources, with a non-lexical scope. Currently, the exceptional behav-
ior due to lock-mishandling is represented as one single error-expression. Adding a
more realistic exception mechanism including exception handling and finally-clauses
to the calculus is a furthrer step in our research. Furthermore we plan to implement
the system for empirical results. The combination of our two type and effect systems,
one for TFJ [12] and one for the calculus in this paper, could be a step in setting up an
integrated system for the applications where locks and transactions are reconciled.

www.manaraa.com

Safe Locking for Multi-threaded Java 173

Acknowledgements. We are grateful to the very thorough anonymous reviewers for
giving helpful and critical feedback and useful pointers to the literature.

References

1. Amtoft, T., Nielson, H.R., Nielson, F.: Type and Effect Systems: Behaviours for Concurrency.
Imperial College Press (1999)

2. Bigliardi, G., Laneve, C.: A type system for JVM threads. In: Proceedings of 3rd ACM
SIGPLAN Workshop on Types in Compilation, TIC 2000, p. 2003 (2000)

3. DeLine, R., Fähndrich, M.: Enforcing high-level protocols in low-level software. In: Proceed-
ings of the 2001 ACM Conference on Programming Language Design and Implementation,
pp. 59–69 (June 2001)

4. Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation (2002)

5. Gerakios, P., Papaspyrou, N., Sagonas, K.: A concurrent language with a uniform treat-
ment of regions and locks. In: Programming Language Approaches to Concurrency and
Communication-eCentric Software. EPTCS, vol. 17, pp. 79–93 (2010)

6. Igarashi, A., Kobayashi, N.: Resource usage analysis. ACM Transactions on Programming
Languages and Systems 27(2), 264–313 (2005)

7. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A minimal core calculus for
Java and GJ. In: Object Oriented Programming: Systems, Languages, and Applications,
OOPSLA 1999, pp. 132–146. ACM (1999); SIGPLAN Notices

8. Iwama, F., Kobayashi, N.: A new type system for JVM lock primitives. In: ASIA-PEPM
2002: Proceedings of the ASIAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, pp. 71–82. ACM, New York (2002)

9. Jagannathan, S., Vitek, J., Welc, A., Hosking, A.: A transactional object calculus. Science of
Computer Programming 57(2), 164–186 (2005)

10. Johnsen, E.B., Tran, T.M.T, Owe, O., Steffen, M.: Safe locking for multi-threaded Java.
Technical Report (revised version) 402, University of Oslo, Dept. of Computer Science
(January 2011), www.ifi.uio.no/~msteffen/publications.html#techreports; A
shorter version (extended abstract) has been presented at the NWPT 2010

11. Tran, T.M.T., Owe, O., Steffen, M.: Safe typing for transactional vs. lock-based concurrency
in multi-threaded Java. In: Pham, S.B., Hoang, T.-H., McKay, B., Hirota, K. (eds.) Pro-
ceedings of the Second International Conference on Knowledge and Systems Engineering,
KSE 2010, pp. 188-193. IEEE Computer Society (October 2010)

12. Tran, T.M.T., Steffen, M.: Safe Commits for Transactional Featherweight Java. In: Méry, D.,
Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 290–304. Springer, Heidelberg (2010); An
earlier and longer version has appeared as UiO, Dept. of Comp. Science Technical Report
392, October 2009 and appeared as extended abstract in the Proceedings of NWPT 2009

13. Oaks, S., Wong, H.: Java Threads, 3rd edn. O’Reilly (September 2004)
14. Stata, R., Abadi, M.: A type system for Java bytecode subroutines. ACM Transactions on

Programming Languages and Systems 21(1), 90–137 (1999)
15. Suenaga, K.: Type-Based Deadlock-Freedom Verification for Non-Block-Structured Lock

Primitives and Mutable References. In: Ramalingam, G. (ed.) APLAS 2008. LNCS,
vol. 5356, pp. 155–170. Springer, Heidelberg (2008)

16. Terauchi, T.: Checking race freedom via linear programming. In: Proceedings of the
2008 ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2008, pp. 1–10. ACM, New York (2008)

www.ifi.uio.no/~msteffen/publications.html#techreports

www.manaraa.com

Analysing the Control Software
of the Compact Muon Solenoid Experiment

at the Large Hadron Collider

Yi-Ling Hwong1,�, Vincent J.J. Kusters1,2, and Tim A.C. Willemse2

1 CERN, European Organization for Nuclear Research,
CH-1211 Geneva 23, Switzerland

2 Department of Mathematics and Computer Science,
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. The control software of the CERN Compact Muon Solenoid exper-
iment contains over 30,000 finite state machines. These state machines are or-
ganised hierarchically: commands are sent down the hierarchy and state changes
are sent upwards. The sheer size of the system makes it virtually impossible to
fully understand the details of its behaviour at the macro level. This is fuelled by
unclarities that already exist at the micro level. We have solved the latter problem
by formally describing the finite state machines in the mCRL2 process algebra.
The translation has been implemented using the ASF+SDF meta-environment,
and its correctness was assessed by means of simulations and visualisations of
individual finite state machines and through formal verification of subsystems of
the control software. Based on the formalised semantics of the finite state ma-
chines, we have developed dedicated tooling for checking properties that can be
verified on finite state machines in isolation.

1 Introduction

The Large Hadron Collider (LHC) experiment at the European Organization for Nuclear
Research (CERN) is built in a tunnel 27 kilometres in circumference and is designed to
yield head-on collisions of two proton (ion) beams of 7 TeV each. The Compact Muon
Solenoid (CMS) experiment is one of the four big experiments of the LHC. It is a gen-
eral purpose detector to study the wide range of particles and phenomena produced in
the high-energy collisions in the LHC. The CMS experiment is made up of 7 subdetec-
tors, with each of them designed to stop, track or measure different particles emerging
from the proton collisions. Early 2010, it achieved its first successful 7 TeV collision,
breaking its previous world record, setting a new one.

The control, configuration, readout and monitoring of hardware devices and the de-
tector status, in particular various kinds of environment variables such as temperature,
humidity, high voltage, and low voltage, are carried out by the Detector Control System

� This work has been supported in part by a Marie Curie Initial Training Network Fellowship of
the European Community’s Seventh framework program under contract number (PITN-GA-
2008-211801-ACEOLE).

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 174–189, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

Analysing the Control Software of the CMS Experiment at the Large Hadron Collider 175

Top Control

Software (FSMs)

Devices

St
at

us
/A

la
rm

s C
om

m
ands

Fig. 1. Architecture of the real-time monitoring and control system of the CMS experiment, run-
ning at the LHC

(DCS). The control software of the CMS detector is implemented with the Siemens
commercial Supervision, Control And Data Acquisition (SCADA) package PVSS-II
and the CERN Joint Controls Project (JCOP) framework [9]. The architecture of the
control software for all four big LHC experiments is based on the SMI++ framework
[5,6]. Under the SMI++ framework, the real world is viewed as a collection of objects
behaving as finite state machines (FSMs). These FSMs are described using the State
Manager Language (SML). A characteristic of the used architecture is the regularity
and relatively low complexity of the individual FSMs and device drivers that together
constitute the control software; the main source of complexity is in the cooperation of
these FSMs. Cooperation is strictly hierarchical, consisting of several layers; see Fig-
ure 1 for a schematic overview. The FSMs are organised in a tree structure where every
node has one parent and zero or more children, except for the top node, which has no
parent. Nodes communicate by sending commands to their children and state updates
to their parents, so commands are refined and propagated down the hierarchy and status
updates are sent upwards. Hardware devices are typically found only at the bottom-most
layer.

The FSM system in the CMS experiment contains over 30,000 nodes. On average,
each FSM contains 5 logical states. Based on our early experiments with some subsys-
tems, we believe that 1030,000 states is a very conservative estimate of the size of the
state space for the full control system. The sheer size of the system significantly con-
tributes to its complexity. Complicating factors in understanding the behaviour of the
system are the diversity in the development philosophies in subgroups responsible for
controlling their own subdetectors, and the huge amount of parameters to be monitored.
In view of this complexity, it is currently impossible to trace the root cause of problems
when unexpected behaviours manifest themselves. A single badly designed FSM may
be sufficient to lead to a livelock, resulting in non-responsive hardware devices, poten-
tially ruining expensive and difficult experiments. Considering the scientific importance
of these experiments, this justifies the use of rigorous methods for understanding and
analysing the system.

Our contributions are twofold. First, we have formalised SML by mapping its lan-
guage constructs onto constructs in the process algebraic language mCRL2 [7]. Second,

www.manaraa.com

176 Y.-L. Hwong, V.J.J. Kusters, and T.A.C. Willemse

based on our understanding of the semantics of SML, we have identified properties
that can be verified for FSMs in isolation, and for which we have developed dedicated
verification tooling.

Using the ASF+SDF meta-environment [13], we have developed a prototype trans-
lation implementing our mapping of SML to mCRL2. This allowed us to quickly as-
sess the correctness of the translation through simulation and visualisation of FSMs
in isolation, and by means of formal verification of small subsystems of the control
software, using the mCRL2 toolset. The feedback obtained by the verification and sim-
ulation enabled us to further improve the transformation. The use of the ASF+SDF
meta-environment allowed us to repeat this cycle in quick successions, and, at the same
time, maintain a formal description of the translation. Although the ASF+SDF Meta
Environment development was discontinued in 2010, we chose it over similar prod-
ucts as ATL because we were already familiar with it and because its syntax-driven,
functional approach results in very clear translation rules.

Our dedicated verification tools allow the developers at CERN to quickly perform
behavioural sanity checks on their design, and use the feedback of the tools to further
improve on their designs in case of any problems. Results using these tools so far are
favourable: with only a fraction of the total number of FSMs inspected so far, several
problems have surfaced and have been fixed.

Outline. We give a cursory overview of the core of the SML language in Section 2. The
mCRL2 semantics of this core are then explained in Section 3, and we briefly elaborate
on the methodology we used for obtaining this semantics. Our dedicated verification
tools for SML, together with some of the results obtained so far, are described in further
detail in Section 4. We summarise our findings and suggestions in Section 5.

2 The State Manager Language

The finite state machines used in the CMS experiment are described in the State Manager
Language (SML) [5,6]. We present the syntax and the suggested meaning of the core
of the language using snapshots of a running example; we revisit this example in our
formalisation in Section 3. Note that in reality, SML is larger than presented here, but
the control system is made up largely of FSMs employing these core constructs only.

Listing 1 shows part of the definition of a class in SML. Conceptually, this is the
same kind of class known from object-oriented programming: the class is defined once,
but can be instantiated many times. An instantiation is referred to as a Finite State
Machine. A class consists of one or more state clauses; Listing 1 only shows the state
clause for the OFF state. Intuitively, a state clause describes how the FSM should behave
when it is in a particular state. Every state clause consists of a list of when clauses and
a list of action clauses, either of which may be empty.

A when clause has two parts: a guard which is a Boolean expression over the states
of the children of the FSM and a referer which describes what should happen if the
guard evaluates to true. The base form of a guard is P in state S, where S is the
name of a state (or a set of state names) and P is a child pattern. A child pattern consists
of two parts: the first part is either ANY or ALL and the second part is the name of a class
or the literal FwCHILDREN. The intended meaning is straightforward:

www.manaraa.com

Analysing the Control Software of the CMS Experiment at the Large Hadron Collider 177

class: $FWPART_$TOP$RPC_Chamber_CLASS

state: OFF

when ((ANYFwCHILDREN in_state ERROR) or

(ANYFwCHILDREN in_state TRIPPED)) move_to ERROR

when (ANYRPC_HV in_state {RAMPING_UP,

RAMPING_DOWN}) move_to RAMPING

when ((ALLRPC_LV in_state ON) and

(ALLRPC_HV in_state STANDBY)) move_to STANDBY

when ((ALLRPC_HV in_state ON) and

(ALLRPC_LV in_state ON)) move_to ON

when ((ALLFwCHILDREN in_state ON) and

(ALLRPC_T in_state OK)) move_to ON

action: STANDBY

do STANDBY ALLRPC_HV

do ON ALLRPC_LV

action: OFF

do OFF ALLFwCHILDREN

action: ON

do ON ALLFwCHILDREN

Listing 1: Part of the definition of the Chamber class in SML

ALLFwCHILDREN in state ON

means “all children are in the ON state”, and:

ANYRPC HV in state {RAMPING UP, RAMPING DOWN}
evaluates to true if “some child of class RPC HV is either in state RAMPING UP or state
RAMPING DOWN”.

A referer is either of the form move to S, indicating that the finite state machine
changes its state to S, or of the form do A, indicating that the action with name A

should be executed next. If the guards of more than one when clause evaluate to true,
the topmost enabled referer is executed. Whenever the FSM moves to a new state, it
executes the when clauses, starting from the top when clause, to see if it should stay in
this state (all guards are false) or if it should go to another state (some guard is true).
It is therefore possible that a single move to referer or statement (see below) triggers a
series of state changes.

An action clause consists of a name and a list of statements. When an FSM receives a
command while in a state S, it looks inside the state clause of state S for an action clause
with the same name as the command and if such an action clause exists, it executes
its statement list. If no such action exists, the command is ignored. For example, if
the Chamber finite state machine from Listing 1 is in state OFF and it receives an ON

command, it will execute the last action clause.

www.manaraa.com

178 Y.-L. Hwong, V.J.J. Kusters, and T.A.C. Willemse

The most commonly used statement is do C P, which means that the command C

is sent to all children which match the child pattern P. After a command is sent, the
child is marked busy. When a child sends its new state back, this busy flag is removed.
The do statement is non-blocking, i.e., it does not wait for the children to respond with
their new state. The child pattern always starts with ALL in this context. SML also
provides if and move to statements, as we illustrated in Listing 2.

action: STANDBY

do STANDBY ALLRPC_HV

do ON ALLRPC_LV

if (ALLRPC_LV in_state ON) then

do ON ALLRPC_HV

do ON ALLRPC_LV

if (ALLRPC_HV in_state ON) then

do ON ALLRPC_HV

move_to ON

endif

else

do STANDBY ALLRPC_LV

do STANDBY ALLRPC_HV

do STANDBY ALLFwCHILDREN

endif

Listing 2: An example of a more complex action clause

The move to S statement immediately stops execution of the action clause and causes
the FSM to move to the S state. The if G then S1 else S2 endif statement blocks
as long as there is a child, referred to in G, that has a busy flag. If the guard G evalutates
to true, then S1 is executed and otherwise S2 is executed. The else clause is optional.

3 A Formal Semantics for SML

We use the process algebra mCRL2 [7] to formalise the semantics of programs written
in SML. The formal translation of SML into mCRL2 can be found in [10].

Our choice for mCRL2 is motivated largely by the expressive power of the language,
its rich data language rooted in the theory of Abstract Data Types, its available tool
support, and our understanding of the advantages and disadvantages of mCRL2. Before
we address the translation of SML to mCRL2, we briefly describe the mCRL2 language.

3.1 A Brief Overview of mCRL2

The mCRL2 language consists of two distinct parts: a data language for describing
the data transformations and data types, and a process language for specifying system
behaviours. For a comprehensive language tutorial, we refer to http://mcrl2.org.

http://mcrl2.org

www.manaraa.com

Analysing the Control Software of the CMS Experiment at the Large Hadron Collider 179

The data language, which is rooted in the theory of abstract data types, includes
built-in definitions for many of the commonly used data types, such as Booleans, Inte-
gers, Natural numbers, etc., and allows users to specify their own data sorts. In addition,
container sorts, such as lists, sets and bags are available.

The process specification language of mCRL2 consists of only a small number of
basic operators and primitives. The language is inspired by process algebras such as
ACP [1], and has both an axiomatic and an operational semantics.

A set of (parameterised) actions are used to model atomic, observable events. Pro-
cesses are constructed compositionally: the non-deterministic choice between processes
p and q is denoted p+q; their sequential composition is denoted p.q, and their parallel
composition is denoted p||q. In addition, there are facilities to enforce communication
between different actions and abstracting from actions.

The main feature of the process language is that processes can depend on data. For
instance, b->p<>q denotes a conditional choice between processes p and q: if b evalu-
ates to true, it behaves as process p, and otherwise as process q. In a similar vein, sum
d:D.p(d) describes a (possibly infinite) choice between processes p with different val-
ues for variable d.

3.2 From SML to mCRL2

We next present our formalisation of SML in mCRL2. Every SML class is converted
to an mCRL2 process definition; the behaviour of an FSM is then described by the be-
haviour of a process instance. Each FSM maintains a state and a pointer to the code it is
currently executing. In addition, an FSM is embedded in a global tree-like configuration
that identifies its parent, and its children. In order to faithfully describe the behaviour
of an FSM, we therefore equip each mCRL2 process definition for a class X with this
information as follows:

proc X_CLASS(self: Id, parent: Id, s: State, chs: Children,

phase: Phase, aArgs: ActPhaseArgs)

Parameter self represents a unique identifier for a process instance, and parent is the
identifier of self’s parent in the tree. Parameter s is used to keep track of the state of
the FSM. The state information of self’s children is stored in chs of sort Children,
which is a list of sort Child, a structured sort:

Children = List(Child);

Child = struct child(id:Id, state:State, ptype:PType, busy:Bool);

The above structured sort Child can be thought of as a named tuple; id represents
the unique identifier of a child, state is the state that this child sent to X in its last
state-update message, ptype maintains the FSM class of this child, and busy is the
flag that indicates that the child is still processing the last command X sent to it. This
flag is set after sending a message to the child, and reset when it responds with its new
state. Whenever X receives a state-update message from one of its children, the chs

structure is updated accordingly. This structure is used to evaluate the when clauses and
to determine to which processes commands have to be sent.

www.manaraa.com

180 Y.-L. Hwong, V.J.J. Kusters, and T.A.C. Willemse

The phase parameter has value WhenPhase if the FSM is executing the when clauses
and ActionPhase otherwise; Phase is a simple structured sort containing these two
values. The phases will be explained in detail in the following section. Finally, aArgs
is a structure that contains information we only need in the action phase. It is defined
as follows:

ActPhaseArgs = struct actArgs(cq: CommandQueue, nrf: IdList,

pc: Int, rsc: Bool)

We forego a discussion of the nrf and rsc parameters, which are solely used during an
intialisation phase. The command queue cq contains messages that are to be sent to an
FSM’s children. Specifically, when executing a do C P statement, we add a pair with
the child’s id and the command C to cq, for every child matching the child pattern P.
The command queue is subsequently emptied by sending the messages stored in cq.

when phase action phase

waiting for
command or
state-update

executing
statements

emptying
command

queue

evaluating
when clauses

all guards are false

receive state-update

received command

executed
last statement

command queue is empty

Fig. 2. Overview of the when phase and the action phase

Phases. During the when phase, a process executes when clauses until it reaches a
state in which none of the guards evaluate to true. It then moves to the action phase.
In the action phase, a process can receive a command from its parent or a state-update
message from one of its children. This process is illustrated in Figure 2. After handling
the command or message, it returns to the when phase.

Translating the when phase turns out to be rather straightforward: for each state a
process term consisting of nested if-then-else statements is introduced, formalised by
mCRL2 expressions of the form b->p<>q (if b, then act as process p, otherwise as
q). Each if-clause represents exactly one when clause. The else-clause of the last when

www.manaraa.com

Analysing the Control Software of the CMS Experiment at the Large Hadron Collider 181

clause sends a state-update message (represented by the mCRL2 action send state)
with the current state to the parent of this FSM and moves to the action phase. An
example is given in Translation 1.

SML mCRL2

state: OFF

when G1 move_to S1

...

when Gn move_to Sn

instate_OFF(s) && isWhenPhase(phase) -> (

translation_of_G1 ->

move_state(self,S1).

X_CLASS(self,parent,S1,chs,phase,aArgs) <>

...

translation_of_Gn ->

move_state(self,Sn).

X_CLASS(self,parent,Sn,chs,phase,aArgs) <>

send_state(self,parent,s).

move_phase(self,ActionPhase).

X_CLASS(self,parent,s,chs,ActionPhase,

reset(aArgs)))

Translation 1: Simplified translation of the when clauses of a state OFF. Note that
p.q describes the process p that, upon successful termination, continues to behave as
process q.

The move state action indicates that the process changes its state. The send state

action communicates with the receive state action to a comm state action, repre-
senting the communication of the new state to the parent. Note that the state is sent only
if none of the guards are true. Upon sending the new state, the process changes to the
action phase, signalled by a move phase action.

Modelling the action phase is more involved as we need to add some terms for ini-
tialisation and sending messages. We will focus on the translation of the action clauses
and the code which handles state-update messages.

SML allows for an arbitrary number of statements and an arbitrary number of (nested)
if-statements in every action clause. We uniquely identify the translation of every state-
ment with an integer label. After executing a statement, the pc(aArgs)program counter
is set to the label of the statement which should be executed next. There are two special
cases here:

– Label 0, the clause selector. When entering the action phase, the program counter is
set to 0. Upon receiving a command, the clause selector sets the program counter to
the label of the first statement of the action clause that should handle the command.

– Label -1, end of action. After executing an action, the program counter is set to -1,
signalling that the command queue must be emptied and the process must change
to the when phase.

www.manaraa.com

182 Y.-L. Hwong, V.J.J. Kusters, and T.A.C. Willemse

An example is given in Translation 2. The receive command action models the recep-
tion of a command that was sent by the FSM’s parent. Such a command is ignored if no
action clause handles it. In the example, observe that both after ignoring a command
and after completing the execution of the STANDBY action handler, the program counter
is set to -1. A process term not shown here then empties the command queue by issue-
ing a sequence of send command actions, and subsequently returns to the when phase.
Note that these send command actions and receive command actions are meant to
synchronise, resulting in a comm command action. This is enforced at a higher level in
the specification.

SML mCRL2

state: OFF

action: STANDBY

do STANDBY ALLY

do ON ALLZ

action: OFF

do OFF ALLY

action: ON

do ON ALLY

instate_OFF(s) && isActPhase(phase) -> (

pc(aArgs) == 0 ->

sum c:Command.(

receive_command(parent,self,c).

isC_STANDBY(c) ->

X_CLASS(self,parent,s,chs,phase,

update_pc(aArgs,1)) <>

isC_OFF(c) ->

X_CLASS(self,parent,s,chs,phase,

update_pc(aArgs,3)) <>

isC_ON(c) ->

X_CLASS(self,parent,s,chs,phase,

update_pc(aArgs,4)) <>

send_state(self,parent,s).

ignored_command(self,c).

X_CLASS(self,parent,s,chs,phase,

update_pc(aArgs,-1))) +

pc(aArgs) == 1 ->

RPC_Chamber_CLASS(self,parent,s,chs,phase,

add_HV_STANDBY_commands(

update_pc(aArgs,2))) +

pc(aArgs) == 2 ->

RPC_Chamber_CLASS(self,parent,s,chs,phase,

add_LV_ON_commands(

update_pc(aArgs,-1)) + ...

Translation 2: Simplified translation of the action clauses of a state OFF

Since a do statement is asynchronous, the children can send their state-update at
any time during the action phase. This is dealt with as follows. Suppose a state-update
message is received. If this precedes the reception of a command in this action phase,

www.manaraa.com

Analysing the Control Software of the CMS Experiment at the Large Hadron Collider 183

we simply process the state-update and move to the when phase. If we are in the middle
of executing an action clause, we process the state-update, but do not move to the
when clause.

3.3 Validating the Formalisation of SML

The challenge in formalising SML is in correctly interpreting its language constructs.
We combined two strategies for assessing and improving the correctness of our se-
mantics: informal discussions with the development team of the language and applying
formal analysis techniques on sample FSMs taken from the control software.

The discussions with the SML development team were used to solidify our initial un-
derstanding of SML and its main constructs. Based on these discussions, we manually
translated several FSMs into mCRL2, and validated the resulting processes manually
using the available simulation and visualisation tools of mCRL2. This revealed a few
minor issues with our understanding of the semantics of SML, alongside many issues
that could be traced back to sloppiness in applying the translation from SML to mCRL2
manually.

In response to the latter problem, we eliminated the need for manually translating
FSMs to mCRL2. To this end, we utilised the ASF+SDF meta-environment (see [13,11])
to rapidly prototype an automatic translator that, ultimately, came to implement the
translation scheme we described in the previous section. The Syntax Definition For-
malism (SDF) was used to describe the syntax of both SML and mCRL2, whereas the
Algebraic Specification Formalism (ASF) was used to express the term rewrite rules
that are needed to do the actual translation. Apart from the gains in speed and the con-
sistency in applying the transformations that were brought about by the automation, the
automation also served the purpose of formalising the semantics of SML.

The final details of our semantics were tested by analysing relatively well-understood
subsystems of the control software in mCRL2. We briefly discuss our findings using a
partly simplified subsystem, colloquially known as the Wheel, see Figure 3. The Wheel
subsystem is a component of the Resistive Plate Chamber (RPC) subdetector of the
CMS experiment. It belongs to the barrel region of the RPC subdetector. Each Wheel
subsystem contains 12 sectors, each sector is equipped with 4 muon stations which are
made of Drift Tube chambers. We forego a detailed formal discussion of this subsystem
(for details, we refer to [12]), but only address our analysis of this subsystem using for-
mal analyses techniques, and the impact this had on our understanding of the semantics
and the transformation. It is important to keep in mind that the analysis was conducted
primarily to assess the quality of our translation, the correctness of the subsystem being
only secondary.

The mCRL2 specification of the Wheel subsystem was obtained by combining the
mCRL2 processes obtained by running our prototype implementation on each involved
FSM. Generating the state space of the Wheel subsystem takes roughly one minute us-
ing the symbolic state space generation tools offered by the LTSmin tools [4]. This
toolset can be integrated in the mCRL2 toolset. For the discussed configuration, the
state space is still of modest proportions, measuring slightly less than 5 million states
and 24 million transitions. Varying the amount of children of class Sector causes a

www.manaraa.com

184 Y.-L. Hwong, V.J.J. Kusters, and T.A.C. Willemse

Monitor
(1)

Wheel
(2)

Sector
(3)

Sector
(4)

ChamberStub
(5)

ChamberStub
(6)

ChamberStub
(7)

ChamberStub
(8)

Wheel subsystem

Fig. 3. A schematic overview of our model of the Wheel subsystem, and its used FSMs. The
identifiers of the processes representing the FSMs are given between parentheses; these were
used in our analyses.

dramatic growth of the state space. Using 3 instead of 2 children of class Sector yields
roughly 800 million states; using 4 children of class Sector, leads to 120 billion states,
and requires half a day.

Apart from repeating the simulations and visualisations, at this stage we also applied
model checking to systematically probe the translation. Together with the development
team of the Wheel subsystem, a few basic requirements were formalised in the first-
order modal μ-calculus [8], see Table 1. The first-order modal μ-calculus is the default
requirement specification language in the mCRL2 toolset.

The studied subsystem was considered to satisfy all stated properties. While smooth-
ing out details in the translation of SML to mCRL2, the deadlock-freedom property was
violated every now and then, indicating issues with our interpretation of SML. These
were mostly concerned with the semantics of the blocking and non-blocking constructs
of SML, and the complex constructs used to model the message passing between FSMs
and their children.

The absence of intermediate states in the when phase was violated only once in
our verification efforts. A more detailed scrutiny of the run revealed a problem in our
translation, which was subsequently fixed.

The third requirement, stating the inevitability of a state change by a child once such
a state change has been commissioned, failed to hold. The violation is caused by the
overriding of commands by subsequent commands that are issued immediately. Dis-
cussions with the development teams revealed that the violations are real, i.e., they are
within the range of real behaviour, suggesting that our formalisation was adequate. The
property was modified to ignore the spurious runs, resulting in the following property:

nu X. [true]X &&

[comm command(i,i c,c)](mu Y. <true>true &&

[!(comm state(i c,i,c2s(c)) ||

exists c’:Command. comm command(i,i c,c’))]Y)

www.manaraa.com

Analysing the Control Software of the CMS Experiment at the Large Hadron Collider 185

Table 1. Basic requirements for the Wheel subsystem; i:Id denotes an identifier of an FSM;
i c:Id denotes a child of FSM i; c:Command denotes a command;c2s(c) denotes the state
with the homonymous command name, e.g., c2s(ON) = ON.

1. Absence of deadlock:

nu X. [true]X && <true>true

2. Absence of intermediate states in the when phase:

nu X. [true]X &&

[exists s:State. move state(i,s)](nu Y.

[(!move phase(i,ActionPhase))]Y

&& [exists s:State. move state(i,s)]false)

3. Responsiveness:

nu X. [true]X &&

[comm command(i,i c,c)](mu Y.

<true>true && [!comm state(i c,i,c2s(c))]Y)

4. Progress:

nu X. [true]X &&

mu Y. <exists s:State. move state(i,s)>true

||

(<true>true && [true]Y)

The final requirement also failed to hold. The violation is similar spirited to the
violation of the third requirement, and, again found to comply to reality. The weakened
requirement that was subsequently agreed upon expresses the attainability of some state
change:

nu X. [true]X &&

mu Y. <exists s:State. move state(i,s)>true || <true>Y

Neither visual inspection of the state space using 2D and 3D visualisation tools, nor
simulation using the mCRL2 simulators revealed any further incongruences in our final
formalisation of SML, sketched in the previous section.

4 Dedicated Tooling for Verification

Some desired properties, such as the absence of loops within the when phase, can be
checked by analysing an FSM in isolation, using the transformation to mCRL2. How-
ever, the verifications using the modal μ-calculus currently require too much overhead
to serve as a basis for lightweight tooling that can be integrated in the SML development
environment.

In an attempt to improve on this situation, we explored the possibilities of using
Bounded Model Checking (BMC) [3,2]. The basic idea of BMC is to check for a coun-
terexample in bounded runs. If no bugs are found using the current bound, then the
bound is increased until either a bug is found, the problem becomes intractable, or

www.manaraa.com

186 Y.-L. Hwong, V.J.J. Kusters, and T.A.C. Willemse

some pre-determined upper bound is reached upon which the verification is complete.
The BMC problem can be efficiently reduced to a propositional satisfiability problem,
and can therefore be solved by SAT methods. SAT procedures do not necessarily suffer
from the space explosion problem, and a modern SAT solver can handle formulas with
hundreds of thousands of variables or more, see e.g. [2].

We have applied BMC techniques for the detection of move to loops and the detec-
tion of unreachable states and trap states. As an example of a move to loop, consider
the excerpt of the ECALfw CoolingDeeFSM class in Listing 3, which our tool found to
contain issues. If an instance of ECALfw CoolingDee has one child in state ERROR and
one in state NO CONNECTION, it will loop indefinitely between these two states. Once
this happens, an entire subsystem may enter a livelock and become unresponsive.

state: ERROR

when (ANYFwCHILDREN in_state NO_CONNECTION) move_to NO_CONNECTION

when (ALLFwCHILDREN in_state OK) move_to OK

state: NO_CONNECTION

when (ALLFwCHILDREN in_state OK) move_to OK

when (ANYFwCHILDREN in_state ERROR) move_to ERROR

Listing 3: An excerpt from the ECALfw CoolingDee FSM that exhibits a loop within
the when phase.

We first convert this problem into a graph problem as follows. Let F be an FSM and
M be a Kripke structure. A state in M corresponds to the combined state of F and its
children, e.g., if F is in state ON and has two children which are in state OFF, then the
corresponding state inM is (ON, OFF, OFF). There is a transition between two states s1
and s2 in M if and only if s1 can do a move to action to s2 in F . Moreover, every
state inM is an initial state. It thus suffices to inspectM instead of F , as stated by the
following lemma:

Lemma 1. F contains a loop of move to actions if and only ifM contains a loop.

We next translate the problem of detecting a loop in M into a SAT problem. First, we
consider executions of length k; afterwards, we show that we can statically choose k
such that we can find every loop.

Let the predicate in state be defined as follows: in state(s, p, i) holds if and only
if the process with identifier p is in state s after i steps. We assign the identifier zero to
the FSM under consideration and the numbers 1, 2, 3, . . . to its children. The resulting
formula will have three components: the state constraints, the transition relation and
the loop condition.

Using the state constraints, we ensure the FSM to always be in exactly one state.
Moreover, the states of the children should not change during the execution of the when
phase, per the semantics in the previous section. This is straigthforwardly expressed as
a boolean formula on the in state predicate.

www.manaraa.com

Analysing the Control Software of the CMS Experiment at the Large Hadron Collider 187

Next, we encode the transition relation: the relation between in state(s, 0, i) and
in state(s′, 0, i+ 1) for every i. In other words: the move to steps the parent process
is allowed to take. This involves converting the when clauses for each state of the parent
FSM, taking care the semantics as outlined in the previous section is reflected. The last
ingredient is the loop condition: if in state(s, 0, 0) holds, then in state(s, 0, i) must
hold for some i > 1, indicating that the parent returned to the state in which it started.

The final SAT formula is obtained by taking the conjunction of the state constraints,
the transition relation and the loop condition. It is not hard to see that if this formula is
satisfiable, then there is a loop in M and hence in F . It is more difficult to show that
if there is a loop, then the formula is satisfiable. Let n be the total number of states of
the FSM and let nt be the total number of states of each child class t. We then have the
following result:

Theorem 1. All possible loops in F can be found by considering paths of length at
most n in an FSM configurationF having nt children for each child class t.

Proof (sketch). Since F only has n states, the longest possible loop also contains n
states. Since every state in M is an initial state, every possible loop can by found by
doing n steps from an initial state.

It remains to show that all loops can be found by considering a configuration with nt
children for each child class t. This follows from the fact that SML guards are restricted
to check for any or all children in a particular state. �	

A second desirable behavioural property of an FSM is that all states should remain
reachable during the execution of an FSM. While we can again easily encode this prop-
erty into the modal μ-calculus, we use a more direct approach to detect violations of
this property by constructing a graph that captures all potential state changes. For this,
we determine whether there is a configuration of children such that F can execute a
move to action from a state s to a state s′. Doing so for all pairs (s, s′) of states of F
yields a graph encoding all possible state changes of F .

Computing the strongly connected components (SCCs) of the thusly obtained graph
gives sufficient information to pinpoint violations to the reachability property: the pres-
ence of more than a single SCC means that one cannot move back and forth these
SCCs (by definition of an SCC), and, therefore, their states. Note that this is an under-
approximation of all errors that can potentially exist, as the actual reachability dynami-
cally depends on the configuration of the children of an FSM. Still, as the state change
graph of the ESfw Endcap FSM class in Figure 4 illustrates, issues can be found in pro-
duction FSMs: the OFF state can never be reached from any of the other states. Using
the graphs generated by our tools, such issues are quickly explained and located.

Results. The results using our dedicated tools for performing these behavioural sanity
checks on isolated FSMs are very satisfactory: of the several hundreds of FSM classes
contained in the control system, we so far analysed 40 FSM classes and found 6 to
contain issues. In 4 of these, we found logical errors that could give rise to livelocks
in the system due to the presence of loops in the when phase; an example thereof is
given in Listing 3. Somewhat unexpectedly, all loops were found to involve two states.
Note that the size of the average FSM class (in general more than 100 lines of SML

www.manaraa.com

188 Y.-L. Hwong, V.J.J. Kusters, and T.A.C. Willemse

ON

HV RAMPING

PARTLY ON LV ON HV OFFOFF LOCKED

ERROR

OFF

Fig. 4. The state change graph for the ESfw Endcap FSM class. The solid lines are bidirectional;
the dotted lines are unidirectional state changes. The SCCs are indicated by the dashed frames.

code, and at least two children) means that even short loops such as the ones identified
so far remain unnoticed and are hard to pinpoint. The remaining two FSM classes were
found to violate the required reachability of states, see e.g. Figure 4. The speed at which
the errors can be found (generally requiring less than a second) means that the sanity
checks could easily be incorporated in the design cycle of the FSMs.

5 Conclusion

We discussed and studied the State Machine Language (SML) that is currently used for
programming the control software of the CMS experiment running at the Large Hadron
Collider. To fully understand the language, we formalised it using the process algebraic
language mCRL2. The quality of our formalisation was assessed using a combination
of simulation and visualisation of the behaviour of FSMs in isolation and formally
verifying small subsystems using model checking. To facilitate, among others, the as-
sessment, the translation of SML to mCRL2 was implemented using the ASF+SDF
meta-environment. Based on our understanding of the semantics of SML, we have built
dedicated tools for performing sanity checks on isolated FSMs. Using these tools we
found several issues in the control system. These tools have been well-received by the
engineers at CERN, and are considered for inclusion in the development environment.

Our formalisation of SML opens up the possibility of verifying realistically large
subsystems of the control system; clearly, it will be one of the most challenging veri-
fication problems currently available. In our analysis of the Wheel subsystem, we have
only used a modest set of tools for manipulating the state space; symmetry reduction,
partial order reduction, parallel exploration techniques, abstractions and abstract in-
terpretation were not considered at this point. It remains to be investigated how such
techniques fare on this problem.

www.manaraa.com

Analysing the Control Software of the CMS Experiment at the Large Hadron Collider 189

Acknowledgments. We thank Giel Oerlemans, Dennis Schunselaar and Frank Staals
from the Eindhoven University of Technology for their contribution to a first draft of the
ASF+SDF translation. We also thank Frank Glege and Robert Gomez-Reino Garrido
from the CERN CMS DAQ group for their support and advice, and Clara Gaspar for
discussions on SML. Jaco van de Pol is thanked for his help with the LTSmin toolset.

References

1. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories of Commu-
nicating Processes. Cambridge Tracts in Theoretical Computer Science, vol. 50. Cambridge
University Press (2010)

2. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded Model Checking.
Advances in Computers 58, 118–149 (2003)

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg
(1999)

4. Blom, S., van de Pol, J., Weber, M.: LTSMIN: Distributed and Symbolic Reachability. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359. Springer,
Heidelberg (2010)

5. Franek, B., Gaspar, C.: SMI++ object-oriented framework for designing and implementing
distributed control systems. IEEE Transactions on Nuclear Science 52(4), 891–895 (2005)

6. Gaspar, C., Franek, B.: SMI++—Object-oriented framework for designing control systems
for HEP experiments. Computer Physics Communications 110(1–3), 87–90 (1998)

7. Groote, J.F., Mathijssen, A.H.J., Reniers, M.A., Usenko, Y.S., van Weerdenburg, M.J.: Anal-
ysis of distributed systems with mCRL2. In: Process Algebra for Parallel and Distributed
Processing, pp. 99–128. Chapman and Hall (2009)

8. Groote, J.F., Willemse, T.A.C.: Model-checking processes with data. Science of Computer
Programming 56(3), 251–273 (2005)

9. Holme, O., González-Berges, M., Golonka, P., Schmeling, S.: The JCOP Framework. Tech-
nical Report CERN-OPEN-2005-027, CERN, Geneva (September 2005)

10. Hwong, Y.-L., Kusters, V.J.J., Willemse, T.A.C.: Analysing the control software of the
Compact Muon Solenoid experiment at the Large Hadron Collider. arxiv.org/abs/1101.5324
(2011)

11. Klint, P.: A meta-environment for generating programming environments. ACM Trans.
Softw. Eng. Methodol. 2(2), 176–201 (1993)

12. Paolucci, P., Polese, G.: The detector control systems for the cms resistive plate chamber,
CERN-CMS-NOTE-2008-036 (2008) see, http://cdsweb.cern.ch/record/1167905

13. van den Brand, M.G.J., van Deursen, A., Heering, J., de Jong, H.A., de Jonge, M., Kuipers,
T., Klint, P., Moonen, L., Olivier, P.A., Scheerder, J., Vinju, J.J., Visser, E., Visser, J.: The
ASF+SDF Meta-Environment: A Component-Based Language Development Environment.
In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp. 365–370. Springer, Heidelberg (2001)

http://cdsweb.cern.ch/record/1167905

www.manaraa.com

A Distributed Logic

for Networked Cyber-Physical Systems

Minyoung Kim, Mark-Oliver Stehr, and Carolyn Talcott

SRI International
{mkim,stehr,clt}@csl.sri.com

Abstract. A distributed logical framework designed to serve as a declar-
ative semantic foundation for Networked Cyber-Physical Systems
provides notions of facts and goals that include interactions with the
environment via external goal requests, observations that generate facts,
and actions that achieve goals. Reasoning rules are built on a partially
ordered knowledge-sharing model for loosely coupled distributed comput-
ing. The logic supports reasoning in the context of dynamically changing
facts and system goals. It can be used both to program systems and to
reason about possible scenarios and emerging properties.

The underlying reasoning framework is specified in terms of con-
straints that must be satisfied, making it very general and flexible. Infer-
ence rules for an instantiation to a specific local logic (Horn clause logic)
are given as a concrete example. The key novel features are illustrated
with snippets from an existing application—a theory for self-organizing
robots performing a distributed surveillance task. Traditional properties
of logical inference and computation are reformulated in this novel con-
text, and related to features of system design and execution. Proofs are
outlined for key properties corresponding to soundness, completeness,
and termination. Finally, the framework is compared to other formal
systems addressing concurrent/distributed computation.

Keywords: Distributed declarative logic, partially ordered knowledge,
networked cyber-physical systems.

1 Introduction

We present a novel distributed logic framework intended to serve as a semantic
foundation for Networked Cyber-Physical Systems (NCPS). NCPS present many
challenges that are not suitably addressed by existing distributed computing
paradigms. They must be reactive and maintain an overall situation awareness
that emerges from partial distributed knowledge. They must achieve system goals
through local, asynchronous actions, using (distributed) control loops through
which the environment provides essential feedback. NCPS should be resilient to
failures of individual elements, readily adapt to changing situations, and often
need to be rapidly instantiated and deployed for a given mission.

To address these challenges, we are developing a logical framework for NCPS
that combines distributed reasoning and asynchronous control in space and time.

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 190–205, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

A Distributed Logic for Networked Cyber-Physical Systems 191

The purpose of logic in this context is many-fold. First of all, it provides a lan-
guage to express and communicate system goals. Dually, it allows expressing and
communicating facts about the current system state. In both cases, communi-
cation includes communication with the users but also communication among
the system components themselves. At the level of an individual cyber-physical
component, the logic provides a declarative interface for goal-oriented control
and feedback through observations that are represented as logical facts. Finally,
it provides a framework for inference and computation, which allows facts and
goals to interact with each other and form new facts or goals. Our aim is a solu-
tion to declarative control that covers the entire spectrum between cooperation
and autonomy, makes opportunistic use of networking resources, and adapts to
changing resource constraints.

In the following we present a distributed inference system that is a significant
step toward this goal. Our logical framework is based on partially ordered knowl-
edge sharing, a distributed computing paradigm for loosely coupled systems that
does not require continuous network connectivity. We use Horn clause logic to
illustrate our approach, which we expect to generalize to more expressive logics.
The features of the framework are illustrated using a theory of self-organizing
robots. A simplified version of the inference system was presented in [11]. The
main contributions of this paper are

– the fully general inference system with explicit derivations,
– the identification of conditions under which key properties such as

soundness, completeness, termination, and confluence hold, and
– the application of our results to a theory for self-organizing robots

2 Case Study: Self-organizing Robots

We focus on networked cyber-physical systems S with a finite set of cyber-nodes.
Two cyber-nodes have the capability to communicate whenever the network con-
ditions permit. Each cyber-node can have sensors that can generate observations
at arbitrary time points, and actuators driven by goals. S may operate under
arbitrary conditions, so there is no guarantee that goals will be achieved. Con-
sider a self-organizing network of mobile robots deployed in a building, e.g., for
situational awareness during an emergency. In this paper, we use an abstract
topological mobility model where a robot is located in some area and can move
to any adjacent area. Each area is equipped with acoustic or motion sensors.
The robots use a common logical theory that specifies a language (constants,
functions, and predicates) and local inference rules based on Horn clause logic.
A robot’s local knowledge (state) consists of a set of facts and a set of goals.
Facts are formulas derived by logical inference or by observation of the environ-
ment. Goals are formulas expressing what the system should achieve and drive
the inference process. Goals can arrive from the environment at any time. They
can also be generated as subgoals during local inference. Robots can exchange
knowledge (i.e., facts and goals) opportunistically if they reside in the same or
adjacent rooms.

www.manaraa.com

192 M. Kim, M.-O. Stehr, and C. Talcott

Forward Clauses:

F1 : Noise(T, A) ⇒ Trigger(T,A).
F2 : Motion(T, A) ⇒ Trigger(T,A).
F3 : Adjacent(A, B) ⇒ Adjacent(B, A).

Backward Clauses:

B1 : Interest(TI, I, R) ⇐ Result(TI , TT , 0, I), Deliver(TI , TT , 1, I,R).

B2 : Deliver(TI , TT , ND, I,R) ⇐ Delivered(TI , TT , ND, I, R).
B3 : Deliver(TI , TT , ND, I,R) ⇐

Position(TP , R, A), P osition(T ′
P , R′, A′), R′ �= R,

MoveTo(TI , TT , ND, 0,∞, R′, A), Deliver(TI , TT , ND, I, R).

B4 : Result(TI , TT , ND, I ′) ⇐ CompImage(TI, TT , ND, I), I ′ = Extract(I).
B5 : CompImage(TI, TT , ND, I ′) ⇐ RawImage(TI, TT , ND, I), I ′ = Compress(I).

B6 : RawImage(TI, TT , ND, I) ⇐ Trigger(TT , A), TI ≤ TT ,
MoveTo(TI , TT , ND, 0, TT + Δtsd, R, A),
T akeSnapshot(TI , TT , ND, TT + Δtsd, A, I).

B7 : TakeSnapshot(TI , TT , ND, D, A, I) ⇐
Snapshot(TI , TT , ND, TS , A, I), TT ≤ TS, TS ≤ D.

B8 : MoveTo(TI , TT , ND, W ′, D, R,B) ⇐ Position(TP , R, B), TP ≤ D.
B9 : MoveTo(TI , TT , ND, W ′, D, R,B) ⇐ Adjacent(A,B), W ′ > −bw, W = W ′ − 1,

MoveTo(TI , TT , ND, W, D, R,A), Move(TI , TT , ND, W ′, D, R, A,B).

Replacement Ordering: (f denotes a fact and g a goal and x denotes either)

O1 : f : Position(tP , r, . . .) ≺ f : Position(t′P , r, . . .) if tP < t′P .
O2 : x : X(tI , . . .) ≺ g : Interest(t′I, . . .) if tI < t′I .
O3 : x : X(tI , tT , 0, . . .) ≺ f : Result(tI , tT , 0, . . .) if x : X �= f : Result.
O4 : x : X(tI , tD, 1, . . .) ≺ f : Deliver(tI , tD, 1, . . .) if x : X �= f : Deliver.

Variables: T : time, D: snapshot deadline, A and B: area, R: robot,
I : image or derived information, N : identifier, W : weight

Constants: Δtsd: relative snapshot deadline (max. delay from trigger event),
bw: bound for weight (diameter of the floor plan)

Fig. 1. Logical Theory for Self-Organizing Robots

Figure 1 shows the logical theory that is used to specify the possible be-
haviors of our self-organizing robots. The clauses are partitioned into forward
and backward rules, providing a means for controlling inference/execution. For-
ward clauses such as the trigger conditions F1 and F2 can be applied at any
time when the conditions are met. Backward clauses are applied only when
the conclusion formula matches (unifies with) an existing goal. Goal atoms ap-
pearing as premises in forward or backward clauses generate new goals to be
satisfied in an execution. The primary goal is delivery of images I to a node
r, Interest(TI , I, r). Figure 2, shows a possible execution of the theory of Fig-
ure 1 achieving an instance of the Interest goal. The variables (TI ,TT ,ND) are
suppressed, as they are fixed for an execution solving primary goal instance. For
example, Result(I) abbreviates Result(tI , tT , nD, I) where tI is the session value
of TI and so on. At the top of Figure 2, the user injects a cyber-goal Interest(I, r)
at the root node r. Backward reasoning with clause B1 is used to add the first

www.manaraa.com

A Distributed Logic for Networked Cyber-Physical Systems 193

subgoal, Result(I), to the local knowledge base. Then clauses B4, B5 for solv-
ing Result goals, are used to add subgoals, CompImage(I) and RawImage(I).

Fig. 2. Example Robot Execution

Meanwhile, at the bottom of Figure
2, the cyber-fact Noise(0.0, a) is ob-
served by the sensor in area a, and for-
ward reasoning using clause F1 leads
to the fact Trigger(0.0, a). Clause
B6 for RawImage(I) has three sub-
goals involving Trigger, MoveTo,
and TakeSnapshot. The leftmost sub-
goal can be matched with the fact
Trigger(0.0, a). Suppose the above
reasoning is carried out by robot r
in area a and further that a camera
robot, x, is in adjacent area b. Then
by communication with r, x can learn
the RawImage goal, and the Trigger
fact and use B6 to add a MoveTo goal
to its knowledge base and B8, B9 to
satisfy the goal. Then using its cam-
era, robot x can take a snapshot adding Snapshot(10.0, a, i) to the set of facts
and apply B7, B6 to realize the TakeSnapshot(tD, a, I), and the RawImage(I)
goals. The goals CompImage(I) and Result(I) can be solved by the robot x,
since it has the fact RawImage(i). Alternatively, it could be satisfied by another
robot, possibly r, depending on available computational resources. The backward
clause B3 is used to steer a robot toward the root node r to deliver the image,
and B2 can be applied once a Delivered fact is available. Then Interest(I, r)
can be satisfied.

Unlike traditional logics, new facts and/or goals can arrive at any time, in-
terleaved with local inference processes. For example, a robot can observe its
position at different times, and possibly get different answers. Two features
of the logical framework help to avoid potential confusion. Certain predicates,
called cyber-predicates, have time stamps as part of their argument list. For ex-
ample, position readings are time stamped and thus different readings can be
distinguished logically by their time stamp. In addition, the logical theory is
augmented by a partial ordering on facts and goals, called the replacement or-
dering. A fact or goal can be replaced by one that is higher in the ordering. This
provides a means of removing outdated knowledge from the distributed system
state, without any need for synchronization.

The clauses (O1-4) at the end of Figure 1 axiomatize the replacement or-
dering of the robot theory. Suppose some robot has a fact Position(0.0, r, b) in
its knowledge base, stating that robot r is in area b at time 0.0, and later the
robot receives the fact Position(1.0, r, a). The replacement rule can be used
to remove Position(0.0, r, b) from its set of facts since Position(0.0, r, b) ≺
Position(1.0, r, a).

www.manaraa.com

194 M. Kim, M.-O. Stehr, and C. Talcott

3 The Distributed Logical Framework

Constraints on the Local Theory. Let Σ be a signature, V a countably
infinite set of variables, and Ω a fixed finite theory of Horn clause logic over
Σ. The sets of terms T (Σ,V), and atoms A(Σ,V), ground terms T (Σ) and
ground atoms A(Σ) are defined as usual. We use P and Q to range over atoms.
A (ground) substitution is a mapping from variables to (ground) terms. We let
σ range over substitutions, and σ(e) denotes the application of a substitution,
that is the result of replacing variables in e by their image under σ.

Σ contains built-in constants for natural numbers and names of cyber-nodes.
Additional built-in functions, and built-in predicates can be included in Σ, and
the application of a built-in predicate cannot be the conclusion of a clause in
Ω. Σ also contains a distinguished set of predicates (distinct from built-ins)
called cyber-predicates. These predicates define the interface of the logic with
the outside world. We use pc to range over such predicates. The first argu-
ment of a cyber-predicate is a natural number interpreted as a timestamp. In
the robot theory, ≤, Compress and Extract are built in, while Snapshot and
Position are cyber-predicates. Clauses in Ω are assigned unique labels, for ex-
ample l : P1, . . . , Pn ⇒ Q is a clause with label l. In addition Ω = Ωf ∪Ωb, where
Ωf and Ωb are sets of clauses that we refer to as forward and backward clauses,
respectively. We use � to denote the standard derivability in Horn clause logic
with all the built-ins in Σ.

A fact is a ground atom. The definition of goal is more complex. A subset
of the predicates, designated as goal predicates, includes at least the built-in
predicates and all predicates that appear in the conclusion of a clause from
Ωb. The set of goals can be any set of (not necessarily ground) atoms that are
applications of goal predicates satisfying the following closure properties: (1) If
G is a goal then σ(G) is a goal. (2) If l : P1, . . . , Pn ⇒ Q ∈ Ωf , j ∈ 1, . . . , n, Pj

is the application of a goal predicate, and σ(Pi) is a fact for i ≤ 1 < j, then
σ(Pj) is a goal. (3) If l : P1, . . . , Pn ⇒ Q ∈ Ωb, Pj is the application of a goal
predicate, σ(Pi) is a fact for all 1 ≤ i < j ≤ n, and σ(Q) is a goal, then σ(Pj) is
a goal. In the robot theory, Interest(tI , I, R) is a goal only for ground terms tI ,
and MoveTo(tI , tT , nD, W, D, R, B) is a goal for ground terms tI , tT , nD. The
capitalized arguments are variables.

We further require the variable restriction: (1) For l : P1, . . . , Pn ⇒ Q ∈ Ωf ,
each variable in Q appears in at least one of P1, . . . , Pn. (2) For l : P1, . . . , Pn ⇒
Q ∈ Ωb, if σ(Q) is a goal, then each variable in σ(Q) appears in at least one of
σ(P1), . . . , σ(Pn). It is easy to check that our example satisfies this restriction.

Derived Atoms as Knowledge. Derived facts and derived goals are objects
of the form f : F and g : G that constitute units of knowledge, atoms equipped
with an indication of their role and an explanation of their origin. The set
of (atomic) derived facts and (atomic) derived goals together is inductively
defined as follows: (1) Bσ(g) : σ(G) is a derived fact if G is a built-in goal,
� σ(G), and g :G is a derived goal. (2) O(F) : F is an atomic derived fact, also
called an observation, for each cyber-fact F , (3) C(G) : G is an atomic derived
goal, also called a control, for each cyber-goal G; (4) lσ(f1, . . . , fn) : σ(Q) is a

www.manaraa.com

A Distributed Logic for Networked Cyber-Physical Systems 195

derived fact if l : P1, . . . , Pn ⇒ Q ∈ Ωf , σ(Q) is a fact, and fi : σ(Pi) are de-
rived facts; (5) l−1

σ (f1, . . . , fj−1) : σ(Pj) is a derived goal if l : P1, . . . , Pn ⇒
Q ∈ Ωf , j ∈ 1, . . . , n, σ(Pj) is a goal, and fi : σ(Pi) are derived facts; (6)
lσ(f1, . . . , fn; g′) : σ(Q) is a derived fact if l : P1, . . . , Pn ⇒ Q ∈ Ωb, σ(Q) is a
fact, fi : σ(Pi) are derived facts, and g′ : G′ is a derived goal with σ(G′) = σ(Q);
and (7) l−1

σ (f1, . . . , fj−1; g′) : σ(Pj) is a derived goal if l : P1, . . . , Pn ⇒ Q ∈ Ωb,
j ∈ 1, . . . , n, σ(Pj) is a goal, fi : σ(Pi) are derived facts, g′ : G′ is a derived goal,
and σ(G′) = σ(Q).

A derived atom is either a derived fact or a derived goal. This is different
from standard approaches to explicit proof objects where derivations of goals
are not considered. We let f : F range over derived facts with derivation f and
underlying fact F . Similarly g : G ranges over derived goals and d : P ranges over
derived atoms. Goals may have variables, and we consider two derived goals that
differ only by renaming of the variables to be the same. Given a derived atom
d : P , it is easy to see that P is uniquely determined by d. We write at(d : P) to
denote the atom of d : P , i.e., P .

We say that d : P is an immediate subderivation of d′ : P ′, written d : P � d′ : P ′,
iff d′ is of the form L(. . . , d, . . .), where L represents any of the above constructors
of derivations. �+ and �∗ denote the transitive and reflexive transitive closure
of �, respectively. We let K range over derived atoms and K range over sets of
derived atoms. The knowledge entailment relation � is defined inductively by:
(1) K ∈ K implies K � K, and (2) K′ �1 K ′′ and K � K ′ for all K ′ ∈ K′ implies
K � K ′′, where K �1 K ′ is defined by K � K ′ for some K ∈ K.

We assume that the set of derived atoms is equipped with a quasi-order≤, the
so-called subsumption order, and a strict partial order ≺, the so-called replace-
ment order. These relations must not make use of the structure of the derivations
other than distinguishing between facts and goals, they must not relate distinct
built-in derived atoms, and ≤ must not relate derived facts and derived goals.
For derived goals g :G and g′ : G′ with G = σ(G′) we require g : G ≤ g′ : G′.
The induced subsumption equivalence K ≡ K ′ is defined as K ≤ K ′ ∧K ′ ≤ K
and strict subsumption is defined by K < K ′ iff K ≤ K ′ and K ′ �≤ K. We
require that the replacement order is a compatible extension of strict subsump-
tion, that is, (1) K < K ′ implies K ≺ K ′, and (2) K ≤ K ′, K ′ ≺ K ′′, and
K ′′ ≤ K ′′′ implies K ≺ K ′′′. In addition, the relations must satisfy the order-
ing consistency requirements, that is, (1) K ≺ K ′ implies K �≡ K ′, and (2)
K ′

1 ≤ K1 ≺ K2 ≤ K ′
2 and K ′

1 < K ′
2 implies K1 < K2.

Distributed Proofs as Interactive Executions. The local state of a cyber-
node is of the form Γ � Δ @ t, x, where x is the unique name of the node, t is a
natural number representing its local time, and Γ ,Δ constitutes the knowledge
at the node. Γ is a finite set of derived facts, and Δ is a finite set of derived goals.
A configuration of a cyber-physical system S is a set of local states Γ � Δ @ t, x,
one for each cyber-node x of S. Given a configuration c containing Γ � Δ @ t, x,
we write Fx(c) and Gx(c) to denote Γ and Δ, respectively.

Figure 3 gives the proof rules of our logic. The rule (Control) represents the
addition of a new user-level objective to the set of system goals. The rule

www.manaraa.com

196 M. Kim, M.-O. Stehr, and C. Talcott

Γ � Δ @ t, x

Γ � Δ, C(G) : G @ t′, x
if G = pc(t, . . .) is a cyber-goal (Control)

Γ � Δ @ t, x

Γ, O(F) : F � Δ @ t′, x
if F = pc(t, . . .) is a cyber-fact (Observation)

Γ, f : F � Δ @ t, x

Γ � Δ @ t′, x
if f : F ≺ Γ, Δ (Replacement1)

Γ � Δ, g : G @ t, x

Γ � Δ @ t′, x
if g : G ≺ Γ, Δ (Replacement2)

Γx � Δx @ tx, x Γy, f : F � Δy @ ty , y

Γx, f : F � Δx @ t′x, x
(Communication1)

if x �= y, t′x ≥ ty, and f : F is fresh at x.

Γx � Δx @ tx, x Γy � Δy, g : G @ ty, y

Γx � Δx, g : G @ t′x, x
(Communication2)

if x �= y, t′x ≥ ty, and g : G is fresh at x

Γ � Δ, g : G @ t, x

Γ, Bσ(g) : σ(G) � Δ, g : G @ t′, x
(Built-in)

if G is a built-in goal with a solution σ(G) such that Bσ(g) : σ(G) is fresh.

Γ, f1 : σ(P1), . . . , fn : σ(Pn) � Δ @ t, x

Γ, f1 : σ(P1), . . . , fn : σ(Pn), f : σ(Q) � Δ @ t′, x
(Forward1)

if l : P1, . . . , Pn ⇒ Q is a clause from Ωf ,
f = lσ(f1, . . . , fn), σ(Q) is a fact, and f : σ(Q) is fresh.

Γ, f1 : σ(P1), . . . , fj−1 : σ(Pj−1) � Δ @ t, x

Γ, f1 : σ(P1), . . . , fj−1 : σ(Pj−1) � Δ, g : σ(Pj) @ t′, x
(Forward2)

if l : P1, . . . , Pn ⇒ Q is a clause from Ωf ,
g = l−1

σ (f1, . . . , fj−1), σ(Pj) is a goal, and g : σ(Pj) is fresh.

Γ, f1 : σ(P1), . . . , fn : σ(Pn) � Δ, g′ : G′ @ t, x

Γ, f1 : σ(P1), . . . , fn : σ(Pn), f : σ(Q) � Δ, g′ : G′ @ t′, x
(Backward1)

if l : P1, . . . , Pn ⇒ Q is a clause from Ωb,
f = lσ(f1, . . . , fn; g′), σ(Q) = σ(G′), σ(Q) is a fact, and f : σ(Q) is fresh.

Γ, f1 : σ(P1), . . . , fj−1 : σ(Pj−1) � Δ, g′ : G′ @ t, x

Γ, f1 : σ(P1), . . . , fj−1 : σ(Pj−1) � Δ, g′ : G′, g : σ(Pj) @ t′, x
(Backward2)

if l : P1, . . . , Pn ⇒ Q is a clause from Ωb,
g = l−1

σ (f1, . . . , fj−1; g
′), σ(Q) = σ(G′), σ(Pj) is a goal, and g : σ(Pj) is fresh.

Γ � Δ @ t, x

Γ � Δ @ t′, x
(Sleep)

Notes. An implicit side condition t < t′ is omitted in all proof rules (tx < t′x in the
communication rules). In the context of a proof rule that has a premise Γ � Δ @ t, x
we say that K is fresh (at x) if there is no K′ ∈ Γ, Δ such that K ≡ K′ or K ≺ K′.
In the condition of proof rules we use σ to range over all most general (not necessarily
ground) substitutions that satisfy the condition of the proof rule.

Fig. 3. Proof Rules of our Distributed Logical Framework for NCPS

www.manaraa.com

A Distributed Logic for Networked Cyber-Physical Systems 197

(Observation) captures the generation of information from the environment,
spontaneously or triggered by a goal. The (Replacement) rules are used to over-
write subsumed and obsolete facts and goals. The (Communication) rules allow
cyber-nodes to exchange facts or goals by means of asynchronous communi-
cation. The time constraints in the rule achieve a minimal level of temporal
consistency. The forward and backward rules implement forward and backward
reasoning. The rule (Forward1) is the usual Horn clause rule. The rule (Forward2)
covers the case where the available facts are not sufficient to apply the clause so
that a new subgoal σ(Pj) needs to be generated for a missing fact. The back-
ward rules are analogous to the two forward rules, but in addition require the
Horn clause conclusion to unify with an existing goal. Finally, the (Sleep) rule
allows the system to be inactive, for example to save energy or wait for new
knowledge.

The proof rules determine a labeled transition relation →r on configurations
of the cyber-physical system S: For configurations c and c′, we have c →r c′

iff there exists an instance of proof rule r such that c contains the premises of
the instance, and c′ is obtained by an update of c with the conclusion, i.e., by
replacing Γ � Δ @ t, x by the conclusion Γ ′ � Δ′ @ t′, x. In this case, we also
say that r is applicable at x in c. An execution of the networked cyber-physical
system S is a finite or infinite sequence π = c0, r0, c1, r1, c2, . . . of configurations
such that ci →ri ci+1 for all i, and we say that ci →ri ci+1, or briefly ri, is the
ith step of π. We say that a rule r is applied in π at j iff r = rj .

For a given execution π, we denote by FO(π) all derived facts of the form
O(F) : F generated in π by the observation rule and by GC(π) all derived goals
of the form C(G) : G generated in π by the control rule.

4 Properties of the Logical Framework

For a logical framework to be a useful semantic foundation it is important that
we understand the guarantees provided by the framework. Here we discuss prop-
erties of executions, π = c0, r0, c1, r1, c2, . . ., where c0 is an initial configuration
in which each node has an empty set of facts and goals. Most of these prop-
erties are independent of the underlying communication system. Several of the
properties only require the Horn clause theory and/or the execution strategy
to satisfy additional conditions. Specifically, we consider notions of Monotonic-
ity, Soundness, Completeness, Termination, and Confluence. These are analogs
of properties of traditional inference and computation systems and important
for ensuring desired properties of specific cyber-physical systems. In the fol-
lowing, π|i denotes the prefix c0, r0, c1, r1, c2, . . . , ci of π, and K � Q denotes
at(K) � Q where at(K) is the set of atoms of the derived facts of K (i.e., ignoring
derivations).

Monotonicity is the property that for all steps i ≤ j of π and for every
cyber-node x, Fx(ci) ⊆ Fx(cj) and Gx(ci) ⊆ Gx(cj). Monotonicity holds if no
replacement rules are applied in π, because only replacement rules remove facts
or goals from a node’s state.

www.manaraa.com

198 M. Kim, M.-O. Stehr, and C. Talcott

Soundness expresses that any derived fact appearing in an execution π is
provable in Horn clause logic (with built-ins) from the previous observations. It
holds because derived atoms that appear in π are entailed by previous observa-
tions and controls of π, and entailment on derived atoms implies entailment in
Horn clause logic.

Theorem 1 (Soundness). For every step i of π, and for each f : F ∈ F(ci),
we have FO(π|i),GC(π|i) � f : F , which in turn implies FO(π|i) � F .

Proof. By Lemmas 1 and 2 below. ��
Lemma 1 (Derivability implies provability). If f : F is a derived fact and
F is the set of facts underlying the atomic subderivations of f : F then F � F

Proof. We show F � F by cases on f . If f : F is Bσ(g) : σ(G), then � σ(G)
by definition of derived facts. If f : F is O(F) : F we have O(F) � O(F). If f : F
is lσ(f1, . . . , fn, [g′]) : σ(Q), with l : P1, . . . , Pn ⇒ Q in Ω, then by induction we
have F � fi : σ(Pi), 1 ≤ i ≤ n and F � σ(Q), applying clause l. ��
Lemma 2 (Derivations are derivable). If f : F ∈ F(ci) and g : G ∈ G(ci),
then FO(π|i), GC(π|i) � f : F and FO(π|i), GC(π|i) � g : G.

Proof. The proof is by induction on i. Note that FO(π|i−1), GC(π|i−1) � f : F
implies FO(π|i), GC(π|i) � f : F (monotonicity of �). We only need to consider
rules ri that introduce a new derived fact f : F or goal g : G at some cyber-node
x. There are five cases for facts and four for goals. Here we show a few cases to
illustrate the arguments (see [8] for the full proof).

(Observation) f : F is O(F) : F , which is in FO(π|i).

(Forward1) f : F is lσ(f1, . . . , fn) : σ(Q), l : P1, . . . , Pn ⇒ Q ∈ Ωf , fj : σ(Pj) ∈
F(ci−1), 1 ≤ j ≤ n. By induction FO(π|i−1), GC(π|i−1) � fj : Fj for 1 ≤ j ≤ n
and so FO(π|i), GC(π|i) � f : F .

(Forward2) g : G is l−1
σ (f1, . . . , fj−1) : σ(Pj), l : P1, . . . , Pn ⇒ Q ∈ Ωf , and

fk : σ(Pk) ∈ F(ci−1), 1 ≤ k < j. By induction FO(π|i−1), GC(π|i−1) � fk : Fk for
1 ≤ k < j and thus FO(π|i), GC(π|i) � g : G. ��
Note that Monotonicity and Soundness are independent of the specific theory;
in particular, they hold for the robot theory.

Completeness gives conditions under which a fact provable in the logic will
eventually be covered (either directly or by subsumption). These conditions in-
clude fairness conditions on executions and consistency conditions between the
theory and the subsumption and replacement orderings.

Definition 1 (Weak Fairness). A rule instance contains the parameters that
determine whether a rule applies in a configuration and if so, what the result is.
It is given by the rule name, the node(s), the clause label, substitution, and all de-
rived facts or goals involved in the application. For example, Forward1(x, l, σ, f1 :

www.manaraa.com

A Distributed Logic for Networked Cyber-Physical Systems 199

σ(P1), . . . , fn :σ(Pn), lσ(f1, . . . , fn) : σ(Q)) represents an instance of the first for-
ward rule. A rule instance ρ is permanently applicable in π at i iff ρ is applicable
to cj for j ≥ i. An execution is logically fair iff each instance of a reasoning
rule, i.e., either a built-in, forward, or backward rule, that is permanently ap-
plicable at i is applied at some j ≥ i. Similarly, an execution is replacement
fair iff each instance of a replacement rule that is permanently applicable at
i is applied at some j ≥ i. An execution is communication fair iff each in-
stance of a communication rule that is permanently applicable at i is applied
at some j ≥ i. An execution is globally fair iff it is logically, replacement, and
communication fair.

Definition 2 (Subsumption Preservation). Wesay subsumption is preserved
iff whenever Ki ≤ K ′

i and K1, . . . , Kn �1 K, then there exists K ′ such that
K ′

1, . . . , K
′
n �1 K ′ and K ≤ K ′ (recall that K ranges over derived atoms).

Definition 3 (Replacement Conditions). Replacement is restricted iff the
following conditions hold: (1) If K1 ≺ K2, then K2 ��+ K1. (2) If K1 ≺ K2,
K1 ��+ K2 and K1 �< K2, then there exists atomic K ′

1, K
′
2 such that K ′

1 �∗ K1,
K ′

2 �∗ K2 and K ′
1 ≺ K ′

2. (3) If K1 ≺ K2, K1 �+ K2, K1 �+ K3, K3 ��+ K2, and
K2 ��+ K3, then K3 ≤ K2. (4) If K1 ≤ K2 and there is an atomic K ′

2 �∗ K2

with K ′
2 ≺ K, then there is an atomic K ′

1 �∗ K1 with K ′
1 ≺ K.

We say that a derived fact f : F is eventually covered in π there is some i and
f ′ :F ′ ∈ F(ci) such that f : F ≤ f ′ : F ′. The essence of completeness is that if
F � F for a subset of the observed facts of an execution, then some derivation
of F will be eventually covered in the execution. The completeness theorem
statement refines this, beginning with sufficient constraints for completeness to
hold. The statement is broken into two parts, first showing provability implies
derivability, and second showing that if a derived fact f : F is entailed by subset of
the observations of an execution, f : F will eventually be covered. This is further
split into two cases depending whether the final rule in the Horn clause derivation
is a forwards or backwards rule. This is needed to account for the requirement
that there must be a goal that unifies with a backwards rule conclusion before
the rule can be applied, and thus in the backwards case, the theorem only applies
to instances of goals.

Theorem 2 (Completeness). Let π be a logically and communication fair ex-
ecution, and let F ⊆ FO(π) and G ⊆ GC(π) be such that each element in F ∪ G
is maximal in FO(π)∪GC (π) w.r.t. the replacement ordering. Assume subsump-
tion is preserved, upward well-founded, and that replacement is restricted. If
at(F) �f F then there exists a derived fact f : F such that F � f : F , which in
turn implies that f : F is eventually covered in π. If G ∈ at(G) and at(F) �b σ(G)
then there exists a derived fact f : σ(G) such that F ,G � f : σ(G), which in turn
implies that f : σ(G) is eventually covered in π. Here �f (�g) denote Horn clause
derivability where the last clause applied is from Ωf (Ωg).

Proof. As for soundness the proof has two parts: (a) showing that entailment in
the Horn logic sense implies entailment in derived-atom sense, and (b) showing

www.manaraa.com

200 M. Kim, M.-O. Stehr, and C. Talcott

that a derived-atom derivable from the observed facts and injected (control)
goals will eventually be covered in an execution. The proof of (a) is similar
to the proof of Lemma 1. The proof of (b) is structured using cases from the
definition of replacement restriction. Maximality of the observed facts is needed
as part of dealing with replacement rules. For details we refer to [8]. ��
Completeness implies that all solutions for a goal are eventually generated, which
is not always a desirable property in practice. For instance, in our robot exam-
ple, the specification states that the user interest is satisfied as soon as one
suitable snapshot is available, and further snapshots (and related activities) can
be suppressed by means of the replacement ordering. Specifically, consider a
situation where one goal TakeSnapshot(tI, tT , nD, tD, A, I) leads to multiple
Snapshot(tI , tT , nD, tS, a, i) facts. Suppose there are two Snapshot facts; the
logic will solve the Result goal with the first and discard both using replace-
ment. In this execution one Snapshot fact will be ignored, but there is another
execution where it is not.

Termination constrains the local inference system to avoid infinite regression
in the attempt to achieve a goal. To state the theorem we need to define the
finite closure property for a set of derived atoms, which by the correspondence
between Horn clause derivability and the derivability relation on derived atoms
is in fact a constraint on the Horn clause theory. We use a special case of the
general definition for simplicity.

Definition 4 (Finite Closure). We say that a set F ∪ G of derived facts and
goals has the finite closure property iff there exists a well-founded quasi-order
(K,≤) such that F ∪ G ⊆ K, for each induced equivalence class K′ the projec-
tion on atoms at(K′) is finite, and the following conditions are satisfied: (0) If
g : G ∈ K is a built-in goal and � σ(G) then Bσ(g) : σ(G) ∈ K and Bσ(g) : σ(G) ≤
g : G. (1) If l : P1, . . . , Pn ⇒ Q in Ωf and K � f1 : σ(P1), . . . , fn : σ(Pn), then
lσ(f1, . . . , fn) : σ(Q) ∈ K, and fi : σ(Pi) ∈ K implies lσ(f1, . . . , fn) : σ(Q) ≤
fi : σ(Pi) for 1 ≤ i ≤ n. (2) If l : P1, . . . , Pn ⇒ Q in Ωf with a goal σ(Pj) and K �
f1 :σ(P1), . . . , fj−1 : σ(Pj−1), then l−1

σ (f1, . . . , fj−1) : σ(Pj) ∈ K, fi : σ(Pi) ∈ K
implies l−1

σ (f1, . . . , fj−1) : σ(Pj) ≤ fi : σ(Pi) for 1 ≤ i < j. (3) If l : P1, . . . , Pn ⇒
Q in Ωb and K � f1 : σ(P1), . . . , fn : σ(Pn), and g′ : G′ ∈ K with σ(Q) = σ(G′),
then lσ(f1, . . . , fn; g′) : σ(Q) ∈ K, and fi : σ(Pi) ∈ K implies lσ(f1, . . . , fn; g′) :
σ(Q) ≤ fi : σ(Pi) for 1 ≤ i ≤ n. (4) If l :P1, . . . , Pn ⇒ Q in Ωb with a goal
σ(Pj) and K � f1 : σ(P1), . . . , fj−1 : σ(Pj−1), and g′ : G′ ∈ K with σ(Q) = σ(G′),
then l−1

σ (f1, . . . , fj−1; g′) : σ(Pj) ∈ K, l−1
σ (f1, . . . , fj−1; g′) : σ(Pj) ≤ g′ : G′, and

fi : σ(Pi) ∈ K with i < j implies l−1
σ (f1, . . . , fj−1; g′) : σ(Pj) ≤ fi : σ(Pi) for

1 ≤ i < j.

Intuitively, the set K over-approximates the set of all derived facts and goals
that could be generated in response to an element from this set. Condition
(0) corresponds to the built-in rule, conditions (1) and (2) correspond to the
forward rules (which can be applied to solutions of goals), and conditions (3)

www.manaraa.com

A Distributed Logic for Networked Cyber-Physical Systems 201

and (4) correspond to the backward rules. We note that K may be infinite, but
due to the use of most general substitutions σ in the proof rules, only a finite
subset of K will be generated in any actual execution.

Theorem 3 (Termination). If FO(π)∪GC(π) is finite and has the finite clo-
sure property then π is terminating, that is, either π is finite or there is some n
such that ri is the sleep rule for all i > n.

Proof. Define depth d(K) of a derived fact or goal K such that if K ∈ K then
there is a descending �-chain in K of length d(K), where � is the relation
inductively generated by the conditions (0)–(4) above (replacing ≤ by �). We
then argue (a) that if π is nonterminating then due to the freshness condition
of the proof rules the set of derived facts and goals grows without bound; and
(b) that there is a finite bound on the set of facts and goals of a given finite
depth. This means that in a nonterminating proof there is a descending �-chain
and hence a descending < chain that grows without bound, which contradicts
well-foundedness. For details we refer to [8]. ��

Our robot theory does satisfy the conditions for termination. Intuitively, the
cases to check involve recursive calls: F3, B3, B9. Recursive calls using the clause
F3, axiomatizing commutativity, lead to cycles with two facts in the equivalence
class for any pair of areas. Calls to B9 will terminate because the argument
W decreases on each until it reaches the lower bound bw. The recursive call in
B3 will never happen, by freshness constraints, but even without freshness the
recursive call results in an equivalent derived fact.

Theorem 4 (Confluence). If π is a globally fair and terminating execution
then π is confluent, i.e., there exists a suffix π′ such that Fx(c) = Fy(c) and
Gx(c) = Gy(c) for all cyber-nodes x, y and c ∈ π′.

Proof. It is easy to see that in a globally fair and terminating system, the re-
placement and communication rules will eventually ensure that all cyber-nodes
will reach the same logical state (disregarding time and name) after no new
knowledge is produced by reasoning rules.

5 Related Work

Knowledge sharing is a well-known idea that has been investigated by Halpern
in [6] and in much subsequent work. Understanding knowledge sharing in dis-
tributed environments has led to a complementary view providing new insights
into distributed algorithms and a logical justification for their fundamental
limitations. For instance, attaining common knowledge, i.e., complete knowl-
edge about the knowledge of other agents (and hence about the global state)
in a distributed system is not feasible in a strict sense, and hence problems
such as coordinated attack are unsolvable in asynchronous systems. In practice,
approximations of common knowledge can be used by making assumptions of
(sufficient) synchrony, but the fundamental problem in asynchronous systems re-
mains. Halpern’s concept of knowledge is based on modal logic, which expresses

www.manaraa.com

202 M. Kim, M.-O. Stehr, and C. Talcott

facts and the state of knowledge of individual agents. A key axiom is the knowl-
edge axiom, which states that if an agent knows a fact, it must be true. Such
an axiom is problematic in a distributed setting without a global view of the
world. Furthermore, such logics do not deal with changes in the facts during the
reasoning process, or the ability to discard facts that are no longer useful, nor
do they take goals into account.

The idea of applying declarative techniques in communication and networking
is not new. A large body of work exists in the areas of specification, analysis,
and synthesis of networking policies and protocols, e.g., in the context of secu-
rity, routing, or dynamic spectrum access. Declarative querying of sensor net-
works has been studied through several approaches, for instance in [13], which
composes services on the fly and in a goal-driven fashion using a concept of se-
mantic streams. Declarative techniques to specify destinations have been used
in disruption-tolerant networking [2]. A variant of Datalog has been applied to
the declarative specification of peer-to-peer protocols [9]. Based on this work,
[3] develops a very interesting approach to declarative sensor networks that can
transmit generated facts to specific neighbors and can also utilize knowledge
about neighbors to specify, e.g., routing algorithms. The idea of providing an
abstraction that views a system as a single asset (an ensemble) rather then pro-
gramming its individual components has been explored in several projects. Most
interesting, the approach in Meld [1] extends the ideas from declarative sensor
networks to modular robots, i.e., ensembles of robots with inter-robot commu-
nication limited to immediate neighbors. As an example, the movement of a
composite robot emerges as a result of the coordinated interaction between its
homogeneous robot modules. Most of the existing work focuses not on the theo-
retical foundations, but on efficient compilation into a conventional programming
language. Another approach is the use of an efficient reasoning engine in embed-
ded systems such as software-defined radios [5] or routers [12] as explored in the
context of disruption-tolerant networking.

6 Conclusion and Future Directions

We have presented first steps toward combining local forward and backward
reasoning in a fully distributed fashion with knowledge that is transparently
shared. A fixed or known neighborhood is not assumed in our more abstract
approach, and the use and dissemination of both facts and goals aims at general
cyber-physical systems with distributed actuation, and hence leads us beyond
sensor networks, in particular to dynamic sensor/actuator networks that are,
unlike ensembles, inherently heterogeneous.

The partial order structure of knowledge enables distributed knowledge shar-
ing and replacement. The subsumption relation has a logical interpretation,
which in a sufficiently expressive logic can be defined in terms of a logical impli-
cation. The replacement ordering, on the other hand, allows the user to specify
when knowledge becomes obsolete. The use of knowledge is not limited to facts;
knowledge can also represent goals. We do not use a modal logic, which means
that knowledge about knowledge must be explicitly represented if needed.

www.manaraa.com

A Distributed Logic for Networked Cyber-Physical Systems 203

We have developed a prototype of our distributed logical framework based
on an implementation of the partially ordered knowledge-sharing model and
an application programming interface (API) for cyber-physical devices that en-
ables interaction with the physical world [7]. Our framework provides a uniform
abstraction for a wide range of NCPS applications, especially those concerned
with distributed sensing, optimization, and control. Key features of our frame-
work are that (i) it provides a generic service to represent, manipulate, and share
knowledge across the network under minimal assumptions on connectivity, (ii) it
enables the same application code to be used in various environments including
simulation models and real-world deployments, (iii) it adapts to a wide range of
operating points between autonomy and cooperation to overcome limitations in
connectivity and resources, as well as uncertainties and failures.

The proof system that we have presented in this paper focuses on a few
core ideas, but the work can be generalized in many directions. One step is the
generalization of the underlying logic, for example, incorporation of equational
features as in Maude [4]. Another possibility is introducing stochastic events
and/or probablistic reasoning.

The logical framework should be thought of as a means of expressing the
space of logically sound behaviors, which can be further constrained by more
quantitative techniques. Our inference rules force a proof strategy that proceeds
according to the ordering of atoms in the conditions of a Horn clause. More
general proof strategies are possible, and could potentially lead to a higher degree
of parallelism. Solved or unsolved goals that cannot generate further solutions
could be removed — for example, by equipping goals with an expiration time
to allow removal in a controlled manner. Several conflicting goals can be active
at the same time, and strategies guided by prioritization and more generally
distributed optimization techniques need to be developed.

This paper presents an interleaving semantics, but a true concurrency se-
mantics, such as the semantics of rewriting logic [10], where the concurrent
application of proof rules is represented explicitly, might be more appropriate.

In this paper derivations are used for meta-level reasoning. However, the ex-
plicit representation of derivations could be made available to applications. Pos-
sible uses include the following.
(1) Faulty Facts Elimination. If the initial sensor data (e.g., noise detected in
area A) is wrong — for example, due to a faulty or malicious sensor — and
is detected, this (meta) fact should be disseminated to other robots and the
inference system should exclude reasoning based on faulty data.
(2) Situation Awareness. Noise was correctly detected, but ceases when one of
the robots arrives in area A. In this case, new facts will be disseminated and
decisions based on the obsolete facts might need to be canceled.
(3) Uncertainty Management. Derivations can be used to indicate whether a
decision was made based on reliable information. If a decision is made based on
an uncertain observation (e.g., a sensor with some error margin), the degree of
uncertainty needs to be propagated through the derivation so that decisions can
be based on the quality of derivations as well as the conclusions.

www.manaraa.com

204 M. Kim, M.-O. Stehr, and C. Talcott

(4) Post-Examination. After a goal is satisfied, one can examine whether further
optimization is possible (e.g., in terms of delay, energy consumption). For exam-
ple, one can examine why a certain robot decided to move in a certain direction.
This can be related to (3) if the less optimal decision was made due to data
uncertainty that was not correctly evaluated (e.g., data fusion from two sensors
with equal weight is suboptimal if one of the sensors has a larger error).

Acknowledgments. Support from National Science Foundation Grant 0932397
(A Logical Framework for Self-Optimizing Networked Cyber-Physical Systems)
and Office of Naval Research Grant N00014-10-1-0365 (Principles and Founda-
tions for Fractionated Networked Cyber-Physical Systems) is gratefully acknowl-
edged. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views
of NSF or ONR.

References

1. Ashley-Rollman, M.P., Goldstein, S.C., Lee, P., Mowry, T.C., Pillai, P.: Meld: A
declarative approach to programming ensembles. In: Proc. of the IEEE Interna-
tional Conference on Intelligent Robots and Systems (IROS 2007) (October 2007)

2. Basu, P., Krishnan, R., Brown, D.W.: Persistent delivery with deferred binding to
descriptively named destinations. In: Proc. of IEEE MILCOM (2008)

3. Chu, D., Popa, L., Tavakoli, A., Hellerstein, J.M., Levis, P., Shenker, S., Stoica, I.:
The design and implementation of a declarative sensor network system. In: SenSys
2007: Proc. of the 5th International Conference on Embedded Networked Sensor
Systems, pp. 175–188 (2007)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L. (eds.): All About Maude - A High-Performance Logical Framework, How
to Specify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350.
Springer, Heidelberg (2007)

5. Elenius, D., Denker, G., Stehr, M.-O.: A Semantic Web Reasoner for Rules, Equa-
tions and Constraints. In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS,
vol. 5341, pp. 135–149. Springer, Heidelberg (2008)

6. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment. Journal of the ACM 37, 549–587 (1984)

7. Kim, M., Stehr, M.-O., Kim, J., Ha, S.: An application framework for loosely
coupled networked cyber-physical systems. In: 8th IEEE Intl. Conf. on Embedded
and Ubiquitous Computing, EUC 2010 (2010)

8. Kim, M., Stehr, M.-O., Talcott, C.: A distributed logic for networked cyber-physical
systems (extended version) (in preparation)

9. Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis,
P., Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative networking. Commun.
ACM 52(11), 87–95 (2009)

10. Meseguer, J.: Conditional Rewriting Logic as a unified model of concurrency. The-
oretical Computer Science 96(1), 73–155 (1992)

www.manaraa.com

A Distributed Logic for Networked Cyber-Physical Systems 205

11. Stehr, M.-O., Kim, M., Talcott, C.L.: Toward Distributed Declarative Control of
Networked Cyber-Physical Systems. In: Yu, Z., Liscano, R., Chen, G., Zhang, D.,
Zhou, X. (eds.) UIC 2010. LNCS, vol. 6406, pp. 397–413. Springer, Heidelberg
(2010)

12. Stehr, M.-O., Talcott, C.: Planning and learning algorithms for routing in
disruption-tolerant networks. In: Proc. of IEEE MILCOM (2008)

13. Whitehouse, K., Zhao, F., Liu, J.: Semantic Streams: A Framework for Composable
Semantic Interpretation of Sensor Data. In: Römer, K., Karl, H., Mattern, F. (eds.)
EWSN 2006. LNCS, vol. 3868, pp. 5–20. Springer, Heidelberg (2006)

www.manaraa.com

Reachability Analysis

of Non-linear Planar Autonomous Systems

Hallstein Asheim Hansen1, Gerardo Schneider2,3, and Martin Steffen3

1 Buskerud University College, Kongsberg, Norway
2 Chalmers University of Gothenburg, Sweden

3 University of Oslo, Norway

Abstract. Many complex continuous systems are modeled as non-linear
autonomous systems, i.e., by a set of differential equations with one inde-
pendent variable. Exact reachability, i.e., whether a given configuration
can be reached by starting from an initial configuration of the system, is
undecidable in general, as one needs to know the solution of the system
of equations under consideration.

In this paper we address the reachability problem of planar autonomous
systems approximatively. We use an approximation technique which “hy-
bridizes” the state space in the following way: the original system is
partitioned into a finite set of polygonal regions where the dynamics on
each region is approximated by constant differential inclusions. Besides
proving soundness, completeness, and termination of our algorithm, we
present an implementation, and its application into (classical) examples
taken from the literature.

1 Introduction

Many complex continuous systems can be modeled as non-linear autonomous
systems, i.e., as a set of differential equations over one independent variable
(typically interpreted as the time). Such systems can be found in the fields of
mechanics, electrical engineering, etc., with typical textbook examples such as
the damped pendulum, and oscillations in an electrical circuit as captured by
the van der Pol oscillator equation.

Reachability analysis addresses the question whether, starting from an initial
state or configuration, a system can evolve into another given state, i.e., whether
it can reach that state. In this paper we investigate how to automate the ap-
proximation of non-linear dynamics in order to answer reachability questions for
non-linear planar autonomous systems. The technique is based on hybridizing1

the state space: the original system is partitioned into a finite set of polygonal re-
gions where the dynamics on each region is approximated by constant differential
inclusions. The resulting abstraction is called a Generalized Polygonal Hybrid
System (GSPDI for short), for which reachability has been proved decidable [19];
the tool GSPeeDI [11] is a reachability-checker for such systems.

1 A hybrid system combines both discrete and continuous behaviour.

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 206–220, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

Reachability Analysis of Non-linear Planar Autonomous Systems 207

A well-known, major difficulty in the analysis of differential equations are
critical points such as sinks and attractors, i.e., objects of the so-called phase
portrait. In their absence, our refinement may iteratively be of arbitrary pre-
cision (at least in theory). In regions containing critical points, however, the
approximating GSPDI may lose precision quite drastically. We introduce an er-
ror measure, and an algorithm which allows us to choose the bound on the error
arbitrarily small to obtain a practical and useful refinement.

Working on an abstraction of the original system gives a semi-test algorithm: a
negative answer to reachability on the approximated system is indeed negative in
the real system, whereas a positive answer is inconclusive. Obviously, a recurrent
’yes’ answer is not useful unless we can iteratively refine the approximation to
arrive, in some cases, at a definite ’no’ with our technique, or ‘yes’ by other
techniques.

Our algorithm takes as input a non-linear planar autonomous system S, an
initial configuration given as set X0 of points on the plane, and a final configura-
tion Xf . Our approach performs reachability analysis by abstraction refinement:
(1) Obtain a first (coarse) GSPDI H from S; (2) Check whether Xf is reachable
from X0; (3) If not, the algorithm terminates with a negative answer. (4) Oth-
erwise, the situation is inconclusive, so refine the partition to obtain a better
approximation H ′ and repeat from (2). The algorithm terminates after the error
measure has been reached.

We prove that the above algorithm terminates and that it is sound and com-
plete. Soundness, as usual, means that the result of the analysis can be relied
on, i.e., the resulting GSPDI is indeed an abstraction of the original autonomous
system in that it includes all the original behavior. Completeness states that if
some state is reachable in the original system, the analysis provides evidence
of that. We cannot expect completeness in that strict form, as the obtained
GSPDIs will always over-approximate the real system, no matter how much we
iterate the refinement procedure sketched above. Each refinement step, which
corresponds to a finer partition of the plane, results in a GSPDI representing
a more precise over-approximation, and by completeness we mean that we can
approximate the original behavior up-to a given margin of error. We have incor-
porated a proof-of-concept prototype of the theory into the tool GSPeeDI. The
prototype uses readily available local optimization libraries, and while this does
not ensure that the test results are conservative in all cases, they give a good
indication of what a real implementation of the theory would provide. We fur-
thermore show the feasibility of the approach on a number of classical examples
taken from the literature, and compare our results to those of related work.

The rest of the paper is organized as follows. Section 2 introduces notation
and some mathematical results needed in the subsequent text. Section 3 gives
the approximation from the dynamics of an autonomous systems to that of a
GSPDI, presents our reachability analysis, and proves soundness, completeness,
and termination. We discuss the implementation in Section 4, related work in
section 5, and conclude in Section 6.

www.manaraa.com

208 H.A. Hansen, G. Schneider, and M. Steffen

2 Background

In this section we present notations and definitions needed in the rest of the
paper. We assume familiarity with Euclidean geometry, in particular vector op-
erations. In the following we assume that, unless stated otherwise, vectors are
normalized, so that two vectors are equal iff their directions are equal. A unit
circle is a circle with radius 1, and vector x specifies a point on a unit circle.
Henceforth, x refers to a vector as well as to the corresponding point on the unit
circle.

An arc ∠b
a is a portion of the circumference of a unit circle, bounded by its

endpoints, a and b, where a is assumed located clockwise of b. On the unit cycle,
the length of an arc, written |∠b

a | is also the angle between a and b, measured
in the interval [0, 2π). We write x ∈ ∠b

a , if vector x is located clockwise of b and
counter-clockwise of a. If both x ∈ ∠b

a and y ∈ ∠b
a then we say that ∠y

x ⊆ ∠b
a

(if x is located clockwise with respect to y), and so forth.
Many physical systems are modeled by one or more differential equations.

Often the behavior of the system describes the development over time, so that
the independent variable represents the time t.

Definition 1 (Autonomous system). A non-linear planar, autonomous, sys-
tem of first-order ordinary differential equations (ODEs) [5] is a system of the
form

dx

dt
= f(x, y) (1)

dy

dt
= g(x, y). (2)

The functions f and g may be non-linear, but neither depend on the independent
variable t.

The functions f and g from Equations (1) and (2) represent derivatives of x
and y w.r.t. t. The length of that vector gives the rate of change at that point
and thus the vector (f(x, y), g(x, y)) describes the system’s momentary dynamic
at state (x, y). An equilibrium point is a point where the dynamic is the null
vector; a system will remain in an equilibrium point forever.

For reachability, it is relevant only whether, not when, some point is reached.
Thus we can normalize the dynamic as follows:

Definition 2 (Normalization). The normalized dynamics of an autonomous
system S is given by the function h : R2 → R2:

h(x, y) = (f(x, y)/r(x, y), g(x, y)/r(x, y))

where
r(x, y) = (

√
f(x, y)2 + g(x, y)2) .

The function is undefined when both f(x, y) = 0 and g(x, y) = 0. If p = (x, y) is
the input to h, we write ṗ for h(x, y).

www.manaraa.com

Reachability Analysis of Non-linear Planar Autonomous Systems 209

l

m
g

dθ

dt

θ

-2.5 0 2.5

-2.5

0

2.5

Fig. 1. On the left, the pendulum, with mass m, length l, gravitational acceleration g,
angle θ, and angular velocity dθ

dt
. In the middle, the phase plane of the pendulum, with

m = 1, c = 2.5, l = 10, g = 10. On the right, a corresponding GSPDI

Example 1 (Pendulum). The damped pendulum of Fig. 1 can be described by
the second-order ODE

ml2
d2θ2

dt2
+ cl

dθ

dt
+mgl sin θ = 0

where constant c is the magnitude of the damping. Setting x = θ and y = dθ
dt

allows us to transform the equation into the following autonomous system of two
first-order ODEs:

dx

dt
= y , (3)

dy

dt
= − c

ml
y − g

l
sinx . (4)

The associated phase plane is shown in Fig. 1 (middle), for the particular values
m = 1, l = 10, c = 2.5, and g = 10. That is, dx

dt = y, and dy
dt = −0.25y − sinx

and the picture illustrates the vector ṗ = (yi,−0.25yi− sinxi) for several points
(xi, yi). The equilibrium points are clearly visible, at (0, 0) in the middle and
furthermore (−π, 0) and (π, 0) to the left, respectively to the right. �	

We will not consider reachability for autonomous systems directly, but rather
by abstracting them into a special form of hybrid systems, known as generalized
polygonal hybrid systems [4, 19]. The discretization is given by a finite parti-
tioning of the plane into separate regions, and the behavior inside each region is
governed by a differential inclusion. More specifically, the dynamics is given by
two vectors restricting the direction of the system’s behavior.

Definition 3 (GSPDI). A Generalized Polygonal Hybrid System (GSPDI) is
a pair H = 〈P, F〉, where P is a finite partition of the plane. Each P ∈ P,
called a region, is a convex polygon with area PA. The union

⋃
P of all regions

is called the domain of the GSPDI and assumed to be a convex polygon of finite
area itself. F is a function associating a pair of vectors to each region, i.e.,
F(P) = (aP ,bP). Every point on the plane has its dynamics defined according

www.manaraa.com

210 H.A. Hansen, G. Schneider, and M. Steffen

to which polygon it belongs to: if p ∈ P , then ṗ ∈ ∠bP
aP

. In the following we
assume all polygons are convex.

A trajectory is a “path” through the state space, given as a function on the
independent variable, which is often interpreted as time. In case of an auton-
mous system, possible trajectories are given by the differential equations; for the
hybrid representation of GSPDIs, trajectories are determined by their direction
of movement, in particular the tangent vector at any point should stay within
the bounding angles (per region).

Definition 4 (Trajectory). Let I = [0, t] be a sub-interval of R≥0 (possibly
identical to R≥0).

1. A trajectory ξ of an autonomous system S, written ξ ∈ S, is an almost-
everywhere differentiable function ξ : I → R2 which solves S for a given
initial condition ξ(t0) = p.

2. A trajectory of a GSPDI H, written ξ ∈ H, is an almost-everywhere differ-
entiable function ξ : I → R2 s.t. the following holds: whenever ξ(t) ∈ P for
some P ∈ P, then its derivative ξ̇(t) ∈ ∠bP

aP
.

We now relate autonomous systems and GSPDIs through an approximation
relation.

Definition 5 (Approximation). A GSPDI H approximates an autonomous
system S (written H ≥ S) if ξ ∈ S implies ξ ∈ H.

Example 2 (Pendulum). Reconsider the damped pendulum fromExample 1 given
in Equations (3) and (4). An approximating GSPDI of the pendulum is shown
in Fig. 1 (right). �	

To abstract an autonomous system successfully into a GSPDI, it is crucial to
expect a certain “smoothness” of the behavior. This is formulated as a continuity
condition, stipulating that if two points p and q are located close to each other,
then their dynamics, ṗ and q̇, do not differ too much.

Definition 6 (Lipschitz continuity.). A function f is Lipschitz continuous
(or just Lipschitz, for short) on a polygon P if, for all points p, q ∈ P , there exists
a constant K such that ||ṗ−q̇||

||p−q|| ≤ K. The smallest such K is called the Lipschitz

constant of the function f on P . The maximum distance ||p − q|| between any
two points p and q in P , the diameter of P , is denoted diam(P).

In the following we assume that the normalized function h describing the dy-
namics of the system (cf. Definition 2) is Lipschitz continuous on all subsets of
R2 except for arbitrarily small neighborhoods around a finite number of points.
Under this assumption, the partition P of the plane falls into two separate groups
of regions, those which are Lipschitz and those which are not, i.e., P = PL ∪PN .

www.manaraa.com

Reachability Analysis of Non-linear Planar Autonomous Systems 211

3 Refinement Algorithm

This section presents the algorithm that over-approximates a given autonomous
system by a GSPDI.

According to Definition 5, a GSPDI approximates the underlying autonomous
system if its trajectories form a superset of the trajectories of the underlying
autonomous system. The following lemma spells out a straightforward condition
that tells us when that approximation holds.

Lemma 1 (Approximation). Let S be an autonomous system with domain
restricted to

⋃
P, and H a GSPDI. If for all trajectories ξ ∈ S and all points

ξ(t) on those trajectories, it is the case that ξ(t) ∈ P and ξ̇(t) ∈ ∠bP
aP

(for some
P ∈ P), then H ≥ S.

Proof. The lemma follows directly from the Definitions 4 and 5. �	

Unavoidably, by going from the autonomous system to the GSPDI, we lose pre-
cision. To determine how good the approximation is we measure the precision of
the approximating GSPDI by considering the angles that bound the trajectories.
More precisely, we use themaximal angle of all the regions of the GSPDI. Clearly,
the smaller that angle, the better the approximation. We use those angles to or-
der GSPDIs and write H ′ ≤ H (“H ′ refines H” or “H over-approximates H ′”)
for the corresponding order. With regions being convex, an angle of π or larger
does not restrict trajectories at all inside a region. Thus π is the maximal angle
to consider. Definition 8 formalizes the corresponding strict refinement relation
H ′ < H , which treats non-Lipschitz regions specially: In a non-Lipschitz region,
e.g., containing an equilibrium point, one cannot reduce the bounding angle.
The only way to strictly refine the system is to partition the region into smaller
regions.

We define two numerical parameters to measure the precision of a GSPDI,
one using the maximal angle that bounds the behavior in a set X of regions,
which will in general be the Lipschitz regions, PL, and the second one to measure
the relative “weight” of the remaining regions Y , in general all the non-Lipschitz
regions of the system PN , compared to the overall domain. In what follows PA

will denote the area of a region P .

Definition 7 (Measures for precision). Assume an autonomous system S
and a GSPDI H = 〈P,F〉, H ≥ S, and two disjoint sets X,Y such that P =
X ∪ Y .

1. θ(X) is the maximum angle |∠bP
aP
| of all P ∈ X.

2. δ(Y) is the relative weight of the regions of Y ,
∑

P∈Y PA

(∪P)A
.

We can order GSPDIs by how precise they model the system dynamics. A GSPDI
refines another if its partition is more fine-grained and, in particular, the bound-
ing angles get smaller. For the same reason as in Definition 7, the latter condition
applies for Lipschitz regions, only. In abuse of notation, we use ≤ to denote the
corresponding refinement relation:

www.manaraa.com

212 H.A. Hansen, G. Schneider, and M. Steffen

Definition 8 (Refinement). Given two GSPDIs H = 〈P,F〉 and H ′ = 〈P′,F′〉,
H ′ refines H properly, written H ′ < H, if P′ is a sub-partition of P, and fur-
thermore |∠aP ′

bP ′ | < |∠bP
aP
|, where P and P ′ with P ′ ⊆ P are Lipschitz regions for

H, resp. of H ′, i.e., P ∈ PL and P ′ ∈ P′
L.

The following lemma states that we can choose our approximating GSPDIs as
precise as we want them.

Lemma 2 (Bounds). Given an autonomous system S, an angle θ with 0 <
θ ≤ π, and a number δ > 0. Then there exists an approximating GSPDI H such
that 1) θ(PL) ≤ θ, and 2) δ(PN) ≤ δ.

Proof. The lemma imposes two conditions on the precision of H . 1) For the first
one, Definition 6 of Lipschitz continuity gives ||ṗ − q̇|| ≤ K||p − q|| for some
K, for all points p, q ∈ P , and where K is the Lipschitz constant for P . Thus,
||ṗ− q̇|| ≤ K ∗ diam(P). Since there is a one-to-one correspondence between the

distance ||ṗ − q̇|| and the angle |∠q̇
ṗ|, we can always partition Q such that all

P ∈ P have a small enough diam(P) such that ||ṗ − q̇|| ≤ K ∗ diam(P) implies

|∠q̇
ṗ| ≤ θ.
2) The second condition is a direct consequence of the earlier assumption that

h is Lipschitz on all subsets of R2 except for arbitrarily small neighborhoods
around a finite number of (isolated) points: we can partition Q such that each
region P from PN , the non-Lipschitz regions, contains exactly one such point
and is arbitrarily small, which in turn renders the ratio arbitrarily small. �	

Lemma 2 guarantees that there is always a GSPDI with θ(X) and δ(Y) arbi-
trarily small, for sets X,Y , trivially by letting PL = X and PN = Y . To actually
arrive at such a GSPDI, one can iteratively partition the domain finer and finer.
For that purpose, we assume a function partition, which when applied to a
partition of Q produces a sub-partition, for instance by splitting one particular
polygon of the current partition. That, of course, leaves open which particular
polygon or polygons are split, i.e., iterating the function partition is non-
deterministic. It should be intuitively clear, that certain strategies for resolving
the non-determinism will not improve the quality of the GSPDI, for instance by
splitting only one half of the domain, but not improving on the other half, leav-
ing the overall precision unchanged. The next lemma states, however, that there
exist strategies of applying partition “smarter” than the one just mentioned,
which eventually lead to partitions such that the corresponding GSPDI is below
any predefined measure of precision.

Lemma 3. Assume an autonomous system S, a polygon Q, an angle θ with
0 < θ ≤ π, and a number δ > 0. Then there exists a strategy to successively
apply the partition function on Q that in a finite number of steps generates
a partition P such that there exists a GSPDI H = 〈P,F〉 with Q as its domain,
and where θ(PL) ≤ θ and δ(PN) ≤ δ, such that H ≥ S.

Proof. The lemma requires application of partition iteratively such that θ(PL)
and δ(PN) get smaller than the given upper bounds. This can be guaranteed, if

www.manaraa.com

Reachability Analysis of Non-linear Planar Autonomous Systems 213

e e

b)a) c)

e

Fig. 2. Using partition on a rectangular initial polygon which contains an equilibrium
point e. PN is colored, PL is white.

the strategy assures that all partitions of the domain of H get arbitrarily small
(by Lemma 2). This can be achieved by splitting the polygons “uniformely”, for
instance, by always splitting (one of the) the largest into halves. �	

In order to illustrate how one would realize partition we present an exam-
ple. Here partitioning is done by simply splitting rectangles into two, along the
rectangle’s longest side. In particular the example shows that the number of
non-Lipschitz regions remain constant under the chosen partitioning strategy.

Example 3. Consider an initial rectangle with an equilibrium point e at the exact
center, see Figure 2. By partitioning twice we get four (colored) regions where the
Lipschitz condition does not hold as they all contain e, Figure 2-a). Continuing
to partition colored regions we can get a situation like in Figure 2-b), and later
like in Figure 2-c). �	

Applying the partition function as in (the proof of) the lemma above gives an
algorithm which takes as input an autonomous system S, an initial polygon Q
of finite area as domain of the intended GSPDI, and two bounds Θ and Δ as
input. The iteration yields as output a partition P which forms part of a GSPDI
H = 〈P;F〉 with H ≥ S and where furthermore P can be divided into two sets,
POK and PBAD , such that θ(POK) ≤ Θ and δ(PBAD) ≤ Δ (cf. Algorithm 1).

To maintain the successively finer partitioning of the given domain Q, the
algorithm uses two collections of regions POK and PBAD . As loop invariant of
the central iteration, the union of POK and PBAD is a partition of the initial
polygon Q. The collection POK contains regions P where |∠bP

aP
| is less than or

equal to Θ. The collection PBAD , on the other hand, contains those regions
whose angles are yet to be computed.

The collection PBAD keeps the regions in a queue, which entails a form of
“breadth-first” strategy: during each iteration, the first region P is removed from
the head of the queue. If the corresponding bounding angle is small enough, i.e.,
if |∠bP

aP
| ≤ Θ, then P is considered finished and moved to POK . Otherwise, P is

partitioned, and the subpolygons P1, . . . , Pn are placed at the back of the queue
PBAD . The while loop is executed until the area of PBAD is less than or equal to
the desired threshold, Δ ∗QA. The return value is the union of POK and PBAD ,
which is a valid partition of Q, satisfying both Θ and Δ.

Note that the algorithm does not compute sets of polygons where underlying
autonomous system is Lipschitz or not. Instead, these properties are implicitly

www.manaraa.com

214 H.A. Hansen, G. Schneider, and M. Steffen

Algorithm 1. Construct a GSPDI on polygon Q on the plane, with precision
parameters Δ and Θ.

Input: Convex polygon Q, Δ ∈ (0, 1], Θ ∈ (0, π]

Empty queue PBAD , and empty collection POK

PBAD .insert(Q)
while (PBAD)A > Δ ∗QA do

P := PBAD .remove()
if |∠bP

aP | ≤ Θ then
POK .insert(P)

else
{P1, . . . , Pn} := partition(P)
PBAD .insert(P1, . . . , Pn)

end if
end while
return POK ∪ PBAD

used to allow the computation of two sets POK and PBAD where |∠bP
aP
| ≤ Θ for

all P ∈ POK and where the area of
⋃
PBAD ≤ Δ ∗ QA (cf. also Definition 7

which gives the measures of precision).
One of the precision measures used in the iteration is the angle which bounds

the dynamics of the system, per partition: For the termination condition of the
refinement process, we rely that for a given polygon P , the minimal bound
can be calculated, i.e., the smallest arc ∠bP

aP
such that ṗ ∈ ∠bP

aP
for all p ∈

P . In the implementation, we use external, numerical routines to implement a
corresponding function getArc that calculates the value of ∠bP

aP
(cf. Section 4

later about the implementation).
By the properties of ∠bP

aP
, i.e., with help of getArc, Algorithm 1 ensures

that all the trajectories of the autonomous system are also trajectories of the
generated approximating GSPDI (Lemma 1), that is the algorithm is sound
It also satisfies that θ(H) ≤ Θ and δ(H) ≤ Δ (Lemma 3), which guarantees
completeness, and also termination of the algorithm.

Theorem 1. Algorithm 1 is sound, complete, and it terminates.

Proof. The soundness of the algorithm is a direct consequence of the approx-
imation Lemma 1: As an invariant, the domain Q is partitioned into regions
P (split into PBAD and POK). Initially, the partition consists of one polygon,
Q, and the loop either keeps the partition or refines it by replacing one poly-
gon by sub-polygons. Each iteration/partition corresponds to a GSPDI, which
approximates the autonomous system by Lemma 1.

As for completeness: the algorithm works by successively partitioning the
polygons of PBAD . For each P considered, there are two options: Either |∠bP

aP
| ≤

Θ, in which case it is moved from PBAD to POK , or not.
The question is whether the area of PBAD eventually will be less that Δ∗QA.

By Lemma 3 and its proof we know that our strategy for applying partition

www.manaraa.com

Reachability Analysis of Non-linear Planar Autonomous Systems 215

will generate two sets PL and PN , the area of the latter which can be made
arbitrarily small, and that we can find an arbitrarily small upper bound on the
angle |∠bP

aP
| for each P ∈ PL. So we let Θ be an upper bound of these |∠bP

aP
|,

eventually forcing PBAD ⊆ PN . By having the upper bound of (∪PN)A asΔ∗QA,
we have that θ(POK) ≤ Θ and δ(PBAD) ≤ δ(PN) ≤ Δ.

Finally, the algorithm terminates when the area of PBAD is less than Δ ∗
QA. The proof of completeness shows that this is always possible to achieve. In
addition, Lemma 3 guarantees that there exists as strategy that generates a PN

with a sufficiently small area in a finite number of steps. Such a strategy is used
in the implementation. �	

4 Prototype Implementation

The tool GSPeeDI contains an implementation of the results introduced in the
previous section [10]. The tool answers ’maybe’ or ’no’ when asked to investigate
safety properties. Graphics are also produced, and all the figures of GSPDIs in
this paper are screen-shots from the tool. An overview of an older version of the
tool has been published in [11].

A key issue was the implementation of the oracle getArc, which should re-
turn the extremal vectors a and b on polygon P , to create the arc ∠bP

aP
. We

extracted the angle of a vector by using the function atan2, which is commonly
implemented in many programming languages. It gives the angle of a vector with
respect to the vector (1, 0) in the interval (−π, π]. Since there is a discontinu-
ity at the point (−1, 0) we also used the function atan2b which gives the same
angle, though in the interval [0, 2π). Extremal vectors were thus obtained by
maximizing and minimizing atan2, alternatively atan2b.

Note that due to the experimental nature of the prototype it does not strictly
enforce the conservativeness of the theory presented in the previous sections.
We used external, numerical routines for finding the extremal values of these
two functions from the extensive Python scientific library Scipy [1]. This library
includes a implementation of the limited memory Broyden-Fletcher-Goldfarb-
Shanno method with bounds (L-BFGS-B) for non-linear optimization [24]. The
bounds in question are box-constraints, which restrict us to rectangular regions.

The empirical results appear correct, as illustrated in figures 3 and 4, but
an implementation that guarantees conservative answers should include global
optimization methods [23].

A very real scenario when using optimization tools of any kind is that they may
fail, depending on starting points, constraints, or the function to be optimized.
The ratio of such failures, and their consequences, obviously determines the
usability of the tool.

In the event of failure, we also implemented a backup routine that produced
arcs that preserved the soundness of Algorithm 1. If that also fails we ultimately
give up and declare the offending region to be reach-all.2 We included a cut-off

2 A reach-all region is one where every point is reachable from any other point.

www.manaraa.com

216 H.A. Hansen, G. Schneider, and M. Steffen

Fig. 3. Reach-set for van der Pol equation with Θ = 0.45 and Δ = 5%. The parameter
μ = 1.5.

parameter to the algorithm implementation to ensure termination, should such
failures should prove abundant.

The implementation was restricted to produce only rectangular regions, and
the partition function is realized as simply splitting a rectangle P with length
l and width w, l ≥ w, into two rectangles with length l/2 and width w.

We are interested in assessing the performance of the prototype when applied
to real non-linear autonomous systems, as means to decide whether to write a
full, conservative implementation of the theory, and so we have performed some
case studies.

4.1 Case Studies

We present results produced by our prototype when used on models of the
damped pendulum (cf. Example 1) and the van der Pol oscillator.

Example 4. The equation of the van der Pol oscillator [6], are used in electrical
engineering, neurology, and seismology. The second-order ODE

x′′(t) = −μ(x(t)− 1)x′(t)− x(t)
can be transformed into a first-order non-linear autonomous system:

x′(t) = y(t)

y′(t) = −μ(x(t) − 1)y(t)− x(t).

The above equation, where the positive constant μ represents the amount of
damping in the system, is interesting because it includes a limit cycle: All tra-
jectories in the system converge towards that cycle.

We executed our tool on a laptop with a 1.33 Ghz Intel Atom processor,
generating GSPDIs with different values of Θ and Δ, with initial area Q =
[−4, 4]× [−4, 4]. The results are shown in table 1. Also, some results are shown
graphically in figures 3 and 4. The desired Δ was attained in all cases. Not

www.manaraa.com

Reachability Analysis of Non-linear Planar Autonomous Systems 217

Table 1. Results obtained by running GSPeeDI on the damped pendulum and the van
der Pol oscillator with different precision parameters

System Θ Δ Refinement Graph building Reach set Remark

Pendulum 0.125 20% 403s 90s 62s
Pendulum 0.2 2.5% 298s 69s 41s Fig. 4
Pendulum 0.5 5% 10s 12s 6s Fig. 4
Pendulum 0.5 0.1% 33s 28s 58s
Van der Pol 0.45 5% 36s 32s 485s Fig. 3
Van der Pol 0.75 5% 12s 17s 2s

shown in the table are the results we got concerning the failure ratio of the
getArc function: For the van der Pol system it failed only on the initial rectangle
Q, and for the pendulum only on Q and the two rectangles Q was split into,
independently of Δ or Θ. We did not observe any failures of the backup routine.

5 Related Work

In this section we briefly survey related work, both with respect to our theoretical
development as well as to our implementation.

5.1 Refinement

The idea of over-approximating systems having complex, often non-linear, dy-
namics by systems with simpler dynamics in order to investigate safety properties
is not novel, and neither is the technique of creating finer and finer partitions
to verify safety properties [14]. Our approach aims at a fully automated process
to answer the reachability question for any non-pathological planar autonomous
system by working on adjusting the precision up to a desirable level.

Defining an upper limit on the approximation error (the Θ parameter in our
approach) is quite standard and used in many other approaches. However, for
non-linear dynamics using only this upper limit is not enough as we cannot
guarantee that |∠bP

aP
| ≤ Θ for non-Lipschitz regions P . The Δ parameter is used

to put an upper limit to the area of these regions.
We presently consider the autonomous systems as ‘black boxes’ that are fed

to the optimization software, while other related works (e.g., [16, 14, 17]) re-
quire manual analysis to find good partitions. Automatic partitioning has been
implemented in [8], but not for systems with non-linear dynamics.

5.2 Approximation

As mentioned above the purpose of refinement is to replace complex, possibly
non-linear, dynamics with simpler yet less precise dynamics. This can be done
by techniques such as rate translation [14], the result of which is a rectangular
hybrid automata [8], or linear phase-portrait approximation, generating linear

www.manaraa.com

218 H.A. Hansen, G. Schneider, and M. Steffen

Fig. 4. Pendulum example: Above a coarse GSPDI and reach-set with parameters
Θ = 0.5 and Δ = 5%, and below a finer GSPDI with parameters Θ = 0.2 andΔ = 2.5%

hybrid automata [15]. In both cases the method and resulting approximation
are motivated by what automata are accepted by their tools, Hytech [12], and
PHAVer [9], respectively. This is also true for our work: we produce approxima-
tions in the form of constant differential inclusions (GSPDIs), which can then be
analyzed using our tool GSPeeDI [11]. Our method, realized through the getArc
function, is optimal for any given region provided the external routines succeed
in finding the extremal vectors of the function h.

5.3 Comparison with Other Tools

Known tools that do not directly analyze non-linear autonomous systems (auto-
matically) are HyTech [12], based on linear hybrid automata [13], PHAVer [9], that
approximates piece-wise affine dynamics into polyhedral automata, and d/dt [3],
which is based on linear differential inclusions. A comparable tool is HSolver [21],
which can analyze systems with non-linear dynamics (based on interval constraint
propagation). HSolver is based on RSolver, a program for solving quantified in-
equality constraints [20], which guarantees conservative results.

We have formulated and run HSolver on the examples mentioned earlier, the
damped pendulum, and the van der Pol equation. While our prototype shows
promising results in terms of execution time, we will postpone any discussion of
this until we have a conservative implementation.

www.manaraa.com

Reachability Analysis of Non-linear Planar Autonomous Systems 219

6 Conclusion

In this paper we presented an approach for reachability for non-linear planar
autonomous systems by hybridizing the system into a GSPDI using abstraction
refinement.

Exploiting Lipschitz continuity for reachability checking and simulation is
not new in itself. It is for instance inherent in the hybridization approach of
[2], and is also used for hybrid computation [7]. A main difference is that we
consider systems that may be Lipschitz continuous only in parts of the plane. A
Lipschitz continuous system has an upper bound, the Lipschitz constant, on how
fast the system’s dynamics changes. We exploit the phenomenon that a system
may be Lipschitz continuous almost everywhere, and have different Lipschitz
constants for different areas of the plane. We minimize the area where the system
is not Lipschitz continuous, and treat areas where the Lipschitz constant is large
more thoroughly than areas where it is small, to get as good an approximation
as possible. This comes with a computational price, as we must identify the
Lipschitz constant for each area we consider, using non-linear optimization tools.
We need, however, to identify these areas only once, and then we can perform
multiple reachability computations based without needing to perform the task
again.

Approximation of complex, possibly non-linear, dynamics by simpler, yet less
precise, dynamics is a well-studied field [14, 16, 8]. Our work demonstrates a
strategy by which, using optimizations tools, we can automate the approximation
of non-linear dynamics, using an optimal approximation for GSPDIs.

We are currently working on a conservative implementation based on the
current prototype. In the future, also we intend to expand the class of systems
that can be analyzed by GSPDIs. Our approach may be used to approximate
differential inclusions and switched continuous systems [22], as well. Applying
the techniques on more general systems with an arbitrary numbers of variables,
different modes, jumps, etc., is also an interesting topic, despite that this will
cause loss of decidability in the approximated system. In addition, since we
now are able to create GSPDIs with a large number of regions, we will work in
improving the tool’s performance and furthermore incorporate the theoretical
improvements investigated in [18].

References

[1] The Scipy library, http://www.scipy.org
[2] Asarin, E., Dang, T., Girard, A.: Reachability Analysis of Nonlinear Systems Using

Conservative Approximation. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS,
vol. 2623, pp. 20–35. Springer, Heidelberg (2003)

[3] Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate Reachability Analy-
sis of Piecewise-Linear Dynamical Systems. In: Lynch, N.A., Krogh, B.H. (eds.)
HSCC 2000. LNCS, vol. 1790, pp. 20–31. Springer, Heidelberg (2000)

[4] Asarin, E., Schneider, G., Yovine, S.: Algorithmic analysis of polygonal hybrid
systems, part I: Reachability. TCS 379(1-2), 231–265 (2007)

http://www.scipy.org

www.manaraa.com

220 H.A. Hansen, G. Schneider, and M. Steffen

[5] Boyce, W., DiPrima, R.: Elementary differential equations and boundary value
problems, 8th edn. Wiley, New York (2004)

[6] Van der Pol, B., Van der Mark, J.: Frequency Demultiplication. Nature 120 (1927)
[7] Dora, J.D., Maignan, A., Mirica-Ruse, M., Yovine, S.: Hybrid computation. In:

ISSAC, pp. 101–108 (2001)
[8] Doyen, L., Henzinger, T.A., Raskin, J.-F.: Automatic Rectangular Refinement of

Affine Hybrid Systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS,
vol. 3829, pp. 144–161. Springer, Heidelberg (2005)

[9] Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past hyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

[10] Hansen, H.A.: GSPeeDI, http://heim.ifi.uio.no/hallstah/gspeedi/
[11] Hansen, H.A., Schneider, G.: GSPeeDI – A Verification Tool for Generalized Polyg-

onal Hybrid Systems. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS,
vol. 5684, pp. 343–348. Springer, Heidelberg (2009)

[12] Henzinger, T.A., Ho, P.-H., Wong-toi, H.: Hytech: A model checker for hybrid
systems. Software Tools for Technology Transfer 1(1) (1997)

[13] Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996, pp. 278–292.
IEEE Computer Society (1996)

[14] Henzinger, T.A., Ho, P.-H.: Algorithmic Analysis of Nonlinear Hybrid Systems.
In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 225–238. Springer, Heidelberg
(1995)

[15] Henzinger, T.A., Wong-Toi, H.: Linear phase-portrait approximations for non-
linear hybrid systems. In: Proceedings of the DIMACS/SYCON Workshop on
Hybrid systems III: Verification and Control, pp. 377–388. Springer-Verlag New
York, Inc., Secaucus (1996)

[16] Ho, P.-H.: Automatic analysis of hybrid systems. PhD thesis, Ithaca, NY, USA
(1995)

[17] Ho, P.-H., Wong-toi, H.: Automated Analysis of an Audio Control Protocol. In:
Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 381–394. Springer, Heidelberg
(1995)

[18] Pace, G., Schneider, G.: A Compositional Algorithm for Parallel Model Checking
of Polygonal Hybrid Systems. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.)
ICTAC 2006. LNCS, vol. 4281, pp. 168–182. Springer, Heidelberg (2006)

[19] Pace, G.J., Schneider, G.: Relaxing Goodness is Still Good. In: Fitzgerald, J.S.,
Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 274–289.
Springer, Heidelberg (2008)

[20] Ratschan, S.: Efficient solving of quantified inequality constraints over the real
numbers. ACM Transactions on Computational Logic 7(4), 723–748 (2006)

[21] Ratschan, S., She, Z.: Safety Verification of Hybrid Systems by Constraint Propa-
gation Based Abstraction Refinement. ACM Transactions in Embedded Comput-
ing Systems 6(1), 573–589 (2007)

[22] Stursberg, O., Kowalewski, S.: Approximating switched continuous systems by
rectangular automata. In: European Control Conference (1999)

[23] Weise, T.: Global Optimization Algorithms Theory and Application. E-book, 2nd
edn (2009), http://www.it-weise.de/

[24] Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 78: L-BFGS-B: Fortran
subroutines for large-scale bound constrained optimization. ACM Trans. Math.
Softw. 23(4), 550–560 (1997)

http://heim.ifi.uio.no/hallstah/gspeedi/
http://www.it-weise.de/

www.manaraa.com

Attacking the Dimensionality Problem

of Parameterized Systems
via Bounded Reachability Graphs�

Qiusong Yang1, Bei Zhang1,3, Jian Zhai1, and Mingshu Li1,2

1 National Engineering Research Center of Fundamental Software
2 State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
3 Graduate University of Chinese Academy of Sciences, Beijing 100039, China

{qiusong,zhangbei,zhaijian,mingshu}@nfs.iscas.ac.cn

Abstract. Parameterized systems are systems that involve numerous
instantiations of finite-state processes, and depend on parameters which
define their size. The verification of parameterized systems is to decide if
a property holds in its every size instance, essentially a problem with an
infinite state space, and thus poses a great challenge to the community.
Starting with a set of undesired states represented by an upward-closed
set, the backward reachability analysis will always terminate because
of the well-quasi-orderingness. As a result, backward reachability anal-
ysis has been widely used in the verification of parameterized systems.
However, many existing approaches are facing with the dimensionality
problem, which describes the phenomenon that the memory used for stor-
ing the symbolic state space grows extremely fast when the number of
states of the finite-state process increases, making the verification rather
inefficient. Based on bounded backward reachability graphs, a novel ab-
straction for parameterized systems, we have developed an approach for
building abstractions with incrementally increased dimensions and thus
improving the precision until a property is proven or a counterexample
is detected. The experiments show that the verification efficiencies have
been significantly improved because conclusive results tend to be drawn
on abstractions with much lower dimensions.

1 Introduction

In various application domains, there is a kind of concurrent systems that is
commonly seen. In these systems, numerous instantiations of one or more than
one finite-state process need to be dynamically created during an application’s
execution to manipulate outer requests or do some background computations. In
addition, it is difficult or impossible to precisely predict the maximum number of

� The work was partially supported by the National Natural Science Foundation of
China under grant No. 60903051, as well as the Knowledge Innovation Program of
the Chinese Academy of Sciences under grant No. ISCAS2009-DR09.

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 221–235, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

222 Q. Yang et al.

instantiations to be created in each execution. As an example, a communication
protocol is presented in Fig. 1. In the protocol, a server process, shown in Fig.
1(a), is responsible for manipulating incoming requests from an arbitrary number
instances of the client process, shown in Fig. 1(b). In each communication, one
head and at least one packet containing data will be sent. For the verification
of such systems, a widely adopted strategy is to find errors in a system with
a smaller size, by limiting the number of instances, without ensuring the full
correctness.

1: task body server is
2: h,p: integer := 0;
3: begin
4: loop
5: exit when done;
6: accept acquire;
7: accept header(h: in integer);
8: accept packet(p: in integer);
9: loop

10: exit when done;
11: accept packet(p: in integer);
12: end loop
13: accept release;
14: end loop;
15: end server;

1: task body client is
2: h,p: integer := 0;
3: begin
4: server.acquire;
5: server.header(h);
6: server.packet(p);
7: loop
8: exit when done;
9: server.packet(p);

10: end loop
11: server.release;
12: end client;

(a) Server (b) Client

Fig. 1. A Simple Communication Protocol

Instead of verifying systems with a limited number of instances, the verifica-
tion of parameterized systems, which involve numerous instantiations of finite-
state processes and depend on parameters defining their size [1], is to decide if
a property holds in its every size instance. In essence, the verification problem
has an infinite state space. In general, the verification of parameterized systems
is undecidable [2]. However, a special class of systems consisting of many identi-
cal and finite-state processes proves to be decidable [3–5]. One class of decision
procedures is based on the algorithm presented in [6, 7], computing backward
reachability graphs of a parameterized system. It outperforms those variants of
forward reachability analysis [4] in the sense that the latter does not terminate
for certain systems and the former does because of the well-quasi-orderingness
of parameterized systems[5].

As in the finite-state case, the verification of parameterized systems also faces
the state space explosion problem and an algorithm’s effectiveness largely de-
pends on data structures used for representing infinite sets of states. To counter
the state space explosion problem, several symbolic approaches based on con-
straints have been investigated [8–11]. The basic idea is to use a set of generators

www.manaraa.com

Attacking the Dimensionality Problem of Parameterized Systems 223

to represent an upward-closed set, the most widely adopted type of set in the
backward reachability analysis of parameterized systems, where each generator
is the conjunction of a set of linear constraints. However, the memory used for
storing the symbolic state space will grow exponentially in the dimension of a
parameterized system, defined as the number of states of the instantiated finite
state processes, as the number of constraints in each symbolic state is normally
closely related to the parameterized system’s dimension. As a result, the dimen-
sionality problem arises. For example, the NA-constraints in [8] and the sharing
trees in [10] both face an exponential blow-up in size. What makes things worse is
that the containment problem, deciding if a set of concrete states represented by
one set of constraints is a subset of the set of states represented by another set of
constraints, is sometimes co-NP complete (for example, the containment problem
for constraints with additions and DV-constraints in [8] and the subsumption
problem for sharing trees in [10]). As a result, those examples investigated in
the literature, such as those in [8] and [10], would be considered of small size in
finite-state model checking.

Based on bounded backward reachability graphs, a novel abstraction for pa-
rameterized systems, we have developed an approach for incrementally increasing
the dimension of abstract states and thus improving the precision until a prop-
erty is proven or a counterexample is detected. The experiments show that the
verification efficiencies have been significantly improved because conclusive re-
sults might be drawn on abstractions with lower dimensions. The sequel of this
paper is organized as follows. Preliminary definitions of parameterized systems
are presented in Section 2. In Section 3, the overview of our approach is given.
Section 4 develops the bounded backward reachability graphs for the verification
of parameterized systems. The experiment results are given in Sections 5 and
the related work is presented in Section 6. Section 7 concludes this paper.

2 Parameterized Systems

Let N denote the set of non-negative integers, N+ the set of positive integers, and
Z the set of all integers, including negative and non-negative ones. Let Nm (Zm)
denote the set of m-dimensional vectors in which each component belongs to the
set N (Z). In the sequel, an operation on vectors is interpreted as applying the
operation’s scalar version component-wise unless otherwise stated. For example,
the operation v1 + v2 results in a vector in which each component is equal to
the addition of corresponding components of v1 and v2. For a given vector v,
v(i) denotes the i-th component of the vector and v(i : n′

i) is equal to v except
for substituting v(i) with n′

i. In addition, 0 denotes a vector whose entries are
all equal to zero.

2.1 Definition

Following the terminologies in [3], the communication alphabet A is a set Σ ×
{!, ?} consisting of: a subset of Σ×{?} of rendezvous input actions and a subset

www.manaraa.com

224 Q. Yang et al.

of Σ × {!} of rendezvous output actions. A process is a tuple A=〈S,A, δ, s0〉
where S denotes a finite set of states, δ ⊆ S × Σ × S a finite set of transitions
and s0 an initial state.

A parameterized system is a total function P over nonnegative integers that
generates a finite transition system for each n, using a control process C and a
user process U . The processes C and U are defined as C = 〈SC ,A, δC , s0

C〉 and
U = 〈SU ,A, δU , s0

U〉, respectively. The system P (n), standing for C × Un, is a
concurrent combination of C and n instances of U which communicate through
complementary rendezvous actions. In essence, a parameterized system defines
an infinite family of concurrent systems containing an arbitrary number of in-
stances of U , which can be thought of as a single infinite-state system [12].

A global state of a parameterized system P , denoted as G = 〈sC , n1, n2, · · · ,
nm〉, consists of a state sC and an m-dimensional counter vector 〈n1, n2, · · · , nm〉
where sC ∈ SC records C’s current state, m is the dimension of the parameterized
system and equal to |SU |, the number of states of U , and each component ni

(1 ≤ i ≤ m) counts instances of U in the state si ∈ SU . The initial state of
a parameterized system is G0

P = 〈s0
C , 0, · · · , ω, · · · , 0〉 where ω is greater than

any integer and it appears in the component corresponding to the initial state
of s0

U (Without loss of generality, we assume that a parameterized system has
only one initial state). A transition of a parameterized system P , denoted as δP ,
describes a communication either between the process C and an instance of U or
between two instances of U , by executing a pair of complementary rendezvous
actions. A parameterized system will move from a global state G to another
state G′ through a communication c, denoted as G →c G′ ∈ δP , such that:
a) G′ = G except that G′(i + 1) = G(i + 1) − 1, G′(j + 1) = G(j + 1) + 1,
G′(k + 1) = G(k + 1) − 1 and G′(l + 1) = G(l + 1) + 1 when G(i + 1) ≥ 1 and
G(k + 1) ≥ 1 and a pair of complementary rendezvous actions in two different
instances of U , si

U →c?(c!) sj
U and sk

U →c!(c?) sl
U , are executed; b) G′ = G except

that G′(1) = s′C , G′(i + 1) = G(i + 1) − 1 and G′(j + 1) = G(j + 1) + 1 when
G(1) = sC and G(i + 1) ≥ 1 and a pair of complementary rendezvous actions
between the process C and an instance of U , sC →c?(c!) s′C and si

U →c!(c?) sj
U , are

executed.
A computation, represented as C, of a parameterized systems defined as a

sequence of communication events c0c1 · · · ck−1 such that there is a path G0
P →c0

G1 →c1 · · · →ck−1 Gk. The projection of a computation C on the control process,
denoted as CC , is a sequence of transitions obtained by orderly picking up those
events in C in which the control process participates by executing a rendezvous
action. Similarly, we can define C’s projections on one or more instance of the
user process, such as CUi , CUi,Uj where Ui and Uj are the ith and jth instance
of U , respectively.

2.2 Verification of Parameterized Systems

As stated in [2], the general verification of parameterized systems is not semi-
decidable. However, a special class of systems consisting of many identical and
finite-state processes, as those parameterized systems defined above, proves to

www.manaraa.com

Attacking the Dimensionality Problem of Parameterized Systems 225

be decidable [3–5]. What we are interested here is to use the automata-theoretic
approach [13, 14] to verify parameterized systems against safety properties. Let
φ be a finite property automaton 〈Sφ, Σ∪Σ×{!, ?}, δφ, s0

φ, Fφ〉, where Fφ is a set
of accepting states. A property automaton essentially defines a set of undesired
behaviors of a system. Once a state in Fφ is reached during a reachability analysis
of the synchronous product P × φ, the property φ is said to be violated in the
system P . We also use Lφ to denote the language accepted by the automaton φ.

In this paper, we consider the following four types of property automata: a)
Automata regulating the universal behavior of a parameterized system, φ is said
to be violated if there is a computation C of the parameterized system whose
prefix belongs to Lφ; b) Automata regulating the behavior of the control process,
φ is said to be violated if there is a computation C in the parameterized system
such that a prefix of CC belongs to Lφ; c) Automata regulating the behavior
of the ith instance of the user process, φ is said to be violated if there is a
computation C in the parameterized system such that a prefix of CUi belongs to
Lφ; d) Automata regulating the behavior of two instances of the user process, φ
is said to be violated if there is a computation C in the parameterized system
such that a prefix of CUi,Uj belongs to Lφ.

s1

s2

s3

s4

acquire?

send head?

send packet?

send packet?

release?

(a) FSAC

s1

s2

s3

s4

s5

acquire!

send head!

send packet!

send packet!

release!

(b) FSAU

s1

s2

s3

s4

s5s6

acquire!1

sent head!1

send packet!1

send packet!1

ΣU/send head!1

ΣU/send packet!1

ΣU/acquire!1

send head!1
acquire!1

release!1

(c) FSAφ̄

Fig. 2. Example Verification Problem in FSMs

The server and client processes in the example problem presented in Fig. 1
are represented by finite automata and they are given in Fig. 2(a) and Fig. 2(b),
respectively. The property given in Fig. 2(c) corresponds to an automaton of
the third type, stating that no orphan packets, which contains only data packets
or the head, will be sent by the instance indexed with 1, that is to say no user
instance will send orphan packets. The state s5 with a diamond shape stands
for a violating state and the notation ΣU/a denotes the alphabet of the process
U except for the action a.

www.manaraa.com

226 Q. Yang et al.

3 Overall Approach

In this section, an overall view of our approach is presented. To start with, we
first need to give the definition of an extended parameterized system, essentially
the synchronous product of a parameterized system and the property automaton
to be verified against. Given a property automaton φ and a parameterized system
P (n) = C × Un, an extended parameterized system, denoted as Pe, is defined as
Pe(n) = φ × C × Un. A global state of an extended parameterized system is a
vector 〈sφ, sC ,v〉 where sφ is φ’s current state and 〈sC ,v〉 is the global state
of the original parameterized system. The initial state corresponding to G0

P is
represented as G0

Pe
. The set of transitions of an extended parameterized systems,

denoted as δPe , is defined as follows:

– If φ is a property automaton regulating the universal behavior of a parame-
terized system, then 〈sφ, G〉 →c 〈s′φ, G′〉 ∈ δPe if and only if sφ →c s′φ ∈ δφ

and G→c G′ ∈ δP .
– If φ is a property automaton regulating the behavior of the control process,

an instance or a pair of instances of the user process, then we will have the
following two rules:
• If c is a communication event in which none of those processes regulated

by the property automaton φ participates, then 〈sφ, G〉 →c 〈sφ, G′〉 ∈ δPe

if and only if G→c G′ ∈ δP .
• If c is a communication event in which some process regulated by the

property automaton φ participates, then 〈sφ, G〉 →c 〈s′φ, G′〉 ∈ δPe if and
only if sφ →c s′φ ∈ δφ and G→c G′ ∈ δP .

Construct a 0-
bounded BRG A0

i = 0

φ violated
in Ai

“feasible”

true

φ is violated in P
true

φ holds in P
false

Construct an (i+1)-
bounded BRG Ai+1

false

i > |SU |
true

i + +

false

Fig. 3. Overall Approach

www.manaraa.com

Attacking the Dimensionality Problem of Parameterized Systems 227

According to the overall approach presented in Fig. 3, the decision procedure
will start with constructing the coarsest abstraction of the backward reachability
graph (BRG) of an extended parameterized system, i.e. 0-bounded BRG A0.
More details about bounded BRGs will be presented in the next section and,
at this point, we only need to know that an i-bounded BRG is an conservative
abstraction of an j-bounded BRG for any i < j ≤ |SU | and the BRG of the
original extended parameterized system is actually the |SU |-bounded BRG. In
each iteration, a conclusion will be drawn if the property has been proved to hold
or a feasible counter-example has been detected in the abstraction Ai. Otherwise,
a refined abstraction will be constructed and the decision procedure will move
into the next iteration.

The essence of the approach is to turn the original verification problem into a
series of sub verification problems with lower dimensions, which tend to have a
much smaller state space. In each sub-problem, the backward reachability anal-
ysis starts with an upward-closed set, constructed from the extended parameter-
ized system. For a set D with a quasi-order, i.e. reflexive and transitive, relation
�, a subset S ⊆ D is upward-closed if every x � y (x ∈ S) entails y ∈ S. For
any x ∈ D, let ↑ x = {y | x � y and y ∈ D} and, for a set S, ↑ S =

⋃
s∈S ↑ s.

A basis of an upward-closed set S is a set Sb ⊆ S such that S =↑ Sb. The
quasi-order relation (�, Pe) over an extended parameterized system is defined
as: 〈sφ, sC ,v〉 � 〈s′φ, s′C ,v′〉 if and only if sφ = s′φ, sC = s′C and v ≤ v′, meaning
that v is componentwise less than or equal to v′. Then, 〈sφ, sC ,v〉 is called a
quasi predecessor of 〈s′φ, s′C ,v′〉. Then, the starting upward-closed set will be
defined as ↑ {Fφ × SC × {〈0, · · · , 0〉}}, containing all the global states with φ
being in an accepting state.

A well-quasi-order (a wqo) is any quasi-order relation � over some set X
such that, for any infinite sequence x0, x1, x2, · · · , consisting of elements of X ,
there exists indexes i < j with xi � xj . As for the relation (�, Pe) defined
previously, it is a well-quasi-order. To prove that, we need the Dickson Lemma,
[15]: Let v1, v2, · · · be an infinite sequence of elements of Nk, there exists i < j
such that vi � vj (pointwise order). In addition, the sets Sφ and SC are finite.
As a result, it is impossible to find an infinite sequence of states in an extended
parameterized system (and bounded BRGs) in which there are no two states
G1 and G2 such that G1 � G2. Each path, starting from the undesired state,
will ends with either the initial state of the verified system, meaning that the
property does not hold, or a state G1 such that another state G2, satisfying
G2 � G1, is reachable from G1. If no paths leading to the initial state exist
in a bounded BRG, it indicates the property does hold in the corresponding
abstraction. As a result, each sub-problem has a finite state space.

As it is also shown in Fig. 3 that a positive conclusion is drawn when i > |SU |,
at most (|SU |+1) iterations are needed in the overall approach. The whole deci-
sion procedure will certainly terminate and return conclusive results on whether
a property holds in the given parameterized system. In the next section, the
detailed definition of bounded BRGs and associated theorems will be presented.

www.manaraa.com

228 Q. Yang et al.

4 Bounded Backward Reachability Graphs

A vector v ∈ Z|SU | (remember that |SU | is the number of states of the user
process U) is said to be i-bounded if v(j) ≥ 0 for all 1 ≤ j ≤ i ≤ |SU |. As
required in the definition of extended parameterized systems, the counter vector
of each state visited during a backward reachability analysis has to be |SU |-
bounded as the number of instances at each state of U has to be not less than
zero. However, a series of upward abstractions for an extended parameterized
system can be constructed if each state is only required to be i-bounded and
only partial entries of counter vectors are considered.

An i-bounded BRG is defined as the abstraction of a given system’s BRG,
where each state is only required to be i-bounded. The dimension of i-bounded
BRG is equal to i. The intuition behind the abstraction is rather straightforward.
Assume that the execution of a communication c requires the participation of
the user process, by executing a transition sl → sm. In the original extended
parameterized system, the communication is enabled only if the component of
the counter vector, corresponding to the state sl, of the current global state is
greater than zero. However, the condition will not be necessary in an i-bounded
BRG if the component corresponding to sl is not included in the first i com-
ponents being taken into account. In essence, an i-bounded BRG simulates an
j-bounded BRG with i < j.

More specifically, the construction of an i-bounded BRG starts with an
upward-closed set of undesired states. Because of the well-quasi-orderingness,
an upward-closed set has a finite basis. At the same time, the set of immedi-
ate predecessors of an upward-closed set is also upward-closed and has a finite
basis. In a bounded BRG, only the states contained in the bases of backwardly
reachable upward-closed sets are needed to stored. Let G = 〈sφ, sC ,v〉 be an i-
bounded state already added to the i-bounded BRG. Then we have the following
rules for adding additional states and transitions:

– If φ is a property automaton regulating the universal behavior of the system,
a transition G′ →c G belongs to the i-bounded BRG, where G′ = 〈s′φ, s′C ,v′〉,
if and only if s′φ →c sφ ∈ δφ, s′C →c!(c?) sC ∈ δC , sk →c?(c!) sj ∈ δU ,
v′ = v + 0(k : 1, j : −1) and v′ is i-bounded;

– If φ is a property automaton regulating only partial behavior of the system,
G′ →c G belongs to the i-bounded BRG if and only if
• none of the processes regulated by φ are participating, sφ = s′φ, sC = s′C ,

sk →c?(c!) sj ∈ δU , sl →c!(c?) sm ∈ δU , v′ = v + 0(k : 1, j : −1) + 0(l :
1, m : −1) and v′ is i-bounded;
• none of the processes regulated by φ are participating, sφ = s′φ, s′C →c?(c!)

sC ∈ δC , sk →c!(c?) sj ∈ δU , v′ = v+0(k : 1, j : −1) and v′ is i-bounded;
• s′φ →c sφ ∈ δφ, s′C →c?(c!) sC ∈ δC , sk →c!(c?) sj ∈ δU , v′ = v + 0(k :

1, j : −1) and v′ is i-bounded;
• s′φ →c sφ ∈ δφ, sC = s′C ,sk →c?(c!) sj ∈ δU , sl →c!(c?) sm ∈ δU ,

v′ = v + 0(k : 1, j : −1) + 0(l : 1, m : −1) and v′ is i-bounded.

www.manaraa.com

Attacking the Dimensionality Problem of Parameterized Systems 229

The above construction procedure will definitely terminate also because of the
Dickson lemma. In addition, as each state in every path of an i-bounded BRG
is i-bounded, they are also called i-bounded paths. Given two states G1 and
G2, G1 is said to be an i-quasi-predecessor of G2 if their local states for the
property automata and the control process are the same and v1(j) ≤ v2(j) for
all 1 ≤ j ≤ i, where v1 and v2 are the counter vectors of G1 and G2, respectively.

From the above construction procedure, we also have the following obser-
vations:: a) During the construction of an i-bounded BRG, a new state will be
discarded if some state that has been added to the BRG is an i-quasi-predecessor
of it. However, the new state might be added to an (i+1)-bounded BRG because
the (i + 1)th entry of the counter vector might make a difference to break the
quasi-order; b) A path in an i-bounded BRG ends with either a state leading
to no new i-bounded states, or a state that is an i-quasi-predecessor of G0

Pe

(then the path is also called an i-bounded counter-example). However, the state
may not be an (i + 1)-quasi-predecessor of G0

Pe
and backward leads to new

(i + 1)-bounded states.
As a result, we can learn that an i-bounded BRG normally has a smaller state

space than a k-bounded BRG with i < k. That’s the most important intuition
behind our approach. More importantly, we have the following theorem to de-
cide when the whole decision procedure can be terminated at an intermediate
iteration and draw a conclusive positive conclusion.

Theorem 1. Given an i-bounded BRG and an (i + 1)-bounded BRG of an ex-
tended parameterized system. If there is an (i+1)-bounded counter-example p in
the (i + 1)-bounded BRG, there must exist an i-bounded counter-example p′ in
the i-bounded BRG.

Proof. To construct an i-bounded path from (i + 1)-bounded one, we need to
remove those possible loops and redundant transitions resulted from abstracting
an (i + 1)-bounded path as an i-bounded one. Let p′ be the resulted path and
then it is proved that p′ is an enabled i-bounded counter-example.

For every transition G →c G′ sequentially appeared in p′, being an enabled
transition of p, they are also sequentially enabled in the i-bounded BRG: a) if no
user processes are involved in the transition, because the transition is enabled
in p and its transition does not involve counter vectors of G and G′; b) if one or
two user processes are involved in the transition, because the first (i + 1) entries
of G′’s counter vector are ensured to be non-negative, otherwise the transition
being not enabled in p.

In addition, the first state of p is also an i-quasi-predecessor of G0
Pe

if it is
contained in p′; otherwise the state’s i-quasi-predecessor in p′ is also an i-quasi-
predecessor of G0

Pe
. ��

In summary, we will have the following algorithm, shown in Fig. 4, for an Iter-
ative and Backward Reachability Analysis (IBRA) of parameterized systems. A
series of BRGs from 0-bounded to |SU |-bounded are sequentially constructed as
the abstractions of the original verification problems. A negative conclusion will

www.manaraa.com

230 Q. Yang et al.

be drawn if a concrete counter-example is found during an iteration, while a posi-
tive conclusion is drawn when no counter-examples are found during an iteration.

IBRA // Decides if a property holds;
1: Graph T ; // Records the BRGs created during the analysis
2: boolean b1 = false; // True if a feasible i-bounded counter-example is found
3: for int i from 0 to m do

// Remember m is the number of states of the user process
4: if i = 0 then
5: Add the set of undesired states to T ;
6: end if
7: Remove those prefixes from T that starts with a non i-bounded state;
8: Backward extend each path in T with i-bounded states that can be backward

reached until all i-bounded paths have been explored or a state that is an i-
quasi-predecessor of G0

Pe
is reached;

9: if A state that is an i-quasi-predecessor of G0
Pe

is reached then
10: if The i-bounded counter-example is feasible then
11: let b1 = true;
12: break; // A negative conclusion is drawn
13: end if
14: else
15: let b1 = false;
16: break; // A positive conclusion is drawn
17: end if
18: end for
19: if b1= true then
20: The property does not hold;
21: else
22: The property does hold;
23: end if

Fig. 4. IBRA

5 Experimental Results

5.1 Experiment Setup

For the sake of simplicity, we have only considered parameterized systems com-
posed of one control process and one user process so far, although an arbitrary
number of instances of the user process can be created. However, it is rather
straightforward to extend the algorithm to parameterized systems consisting of
a finite number of control processes and user processes. The algorithm remains
exactly the same except that new local states and counter vectors are introduced
to cover those additional processes in the global states.

Those systems used in the following experiments are listed in Table 11. For
each example problem, the details, such as the control processes and user

1 Further details about those systems and the raw data collected during the following
experiments can be seen from http://124.16.139.190/qiusongyang/systems.htm

http://124.16.139.190/qiusongyang/systems.htm

www.manaraa.com

Attacking the Dimensionality Problem of Parameterized Systems 231

Table 1. List of Example Problems Used in the Experiments

Index Systems φ |φ| C |C| U |U| m

P1 Bin Example Inverse Dependency (Type 1, F) 24 Control 6 User 9 4

P2 Loop Example Looped Dependency (Type 1, F) 32 Control 4 User 7 4

P3 Simple Protocol Mutual Exclusive (Type 4, T) 36 Server 9 Client 10 5
P4 No Orphan Packets (Type 3, T) 20

P5 Size=50 Produce First (Type 1, T) 15 Buffer 151 Producer 6 6
P6 Producer& Produce First (Type 2, T) 15 Consumer 6
P7 Consumer Size=100 Produce First (Type 1, T) 15 Buffer 301 Producer 6 6
P8 Produce First (Type 2, T) 15 Consumer 6

P9 Gas Station Start Pumping First (Type 2, T) 19 Pump1 12 Client 23 11
P10 Start Pumping First (Type 3, T) 52 Pump2 12

processes of a parameterized system, the property to be verified, and their sizes
are presented. Here, the size of an FSA is the sum of the numbers of states
and transitions. In addition, the property’s type information indicates the type
of property automaton to be verified as discussed in Section 2.2. The indicator
“T ” or “F” shows whether or not the property actually holds in the system
being verified. The last column, m, gives the dimension of counter vectors of
each parameterized system.

The algorithm IBRA and existing typical algorithms for verification of param-
eterized systems are implemented in JAVA. Each data sample collected during
the experiments consists of the execution time in milliseconds, the storage space
needed to restore the global states reached during the verification. The algo-
rithms are run on a Lenovo desktop with a Dual E2140@1.60GHz CPU and
1GB of memory running Windows XP.

5.2 Experiment Results

We tested the algorithm IBRA on the example problems listed in Table 1. For
each example problem, the iterations for deciding if a property holds in the
corresponding parameterized system are given in Table 2. The boolean variable
B1 indicates whether an i-bounded counter-example is encountered during the
ith iteration (assume that the index starts with zero), while B2 is true if the
counter-example is feasible in the original system. The number of states visited
during each iteration is recorded in Si. IBRA’s average execution time on each
example problem is presented in the last column.

From Table 2, we can make the following observations. As for the problems
from P3 to P10, it returns the decision result after the first iteration because B1

is false, indicating that there is no counter-examples in the most coarsest upward
abstraction. It should be also noted that the algorithm returns conclusive results
in the second iteration of the problem P1. B1 and B2 are simultaneously being
true only if a feasible counter-example has been found.

To demonstrate the effectiveness of IBRA, we also implemented the Backward
Reachability Analysis (BRA) algorithm proposed in [6, 7], from which many

www.manaraa.com

232 Q. Yang et al.

Table 2. Experiment Results of IBRA

Index B1 B2 Si T(ms) Index B1 B2 Si T(ms) Index B1 B2 Si T(ms)

P1 i = 0 T F 4 35.8 P2 i = 0 T F 5 89.1 P5 i = 0 F 202 109.3
i = 1 T T 4 i = 1 T F 5 P6 i = 0 F 202 89.2
i = 2 T F 4 i = 2 T F 5 P7 i = 0 F 402 271.6
i = 3 T F 7 i = 3 T F 47 P8 i = 0 F 402 297.1
i = 4 T T 15 i = 4 T F 47 P9 i = 0 F 42 21.9

P3 i = 0 F 64 34.1 P4 i = 0 F 732 206.3 P10 i = 0 F 1044 390.6

variants, such as [5, 7–10, 15], have been derived. The comparison between the
two algorithms is presented in Fig. 5. We use the ratio of IBRA’s average run-
ning time (visited states) to BRA’s average running time (visited states) as the
y-axis of the figure. On the x-axis, those example problems are orderly listed. The
larger a ratio is, the better IBRA performs than BRA in an example problem.

From Fig. 5, it is confirmed that the number of states visited in IBRA will not
be more than those visited by BRA. The worst case is that IBRA has to visit
all states reached in BRA. Only partial state space reached in BRA is visited by
IBRA for all the example problems except for P1, P2, and P9. As for the average
running time, the algorithm BRA outperforms IBRA in P1 and P2. However,
the time ratio is very close to one because the number of states visited during
the first several iterations of IBRA is relatively small. Although their sets of
visited states are the same, the algorithm IBRA outperforms BRA somewhat
in P9, because each operation deciding if one state is a 0-quasi-predecessor of
the other does not involve counter vectors in IBRA’s 0th iteration. The data
from other example problems demonstrates that an algorithm’s execution time
strongly depends on the number of states visited and a reduction in number of
states often results in a greater gain in the execution time due to such factors
as garbage collection [16].

Time

States

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Example Problems

BRA/IBRA

Fig. 5. IBRA vs. BRA

www.manaraa.com

Attacking the Dimensionality Problem of Parameterized Systems 233

6 Related Work

An abstract algorithm based on backward reachability analysis is proposed in
[6, 7] to verify concurrent systems with an infinite-state space. Several variants
of the algorithm have been devised for verification of parameterized systems.
Although the common idea is to calculate a least fixed-point, the data struc-
tures used for symbolically representing infinite sets of states are different. In
[8], the authors use additive constraints, linear arithmetic constraints with addi-
tions, to represent collections of upward-closed sets. In [9, 10], sharing trees, in
which a path corresponds to a generator (an element of the basis), are used in
a compact way to represent an upward-closed set. In [11], NA-constraints and
DV-constraints are used for representing upward-closed sets encountered during
the backward reachability analysis of broadcast protocols. When implementing
our approach, we actually used NA-constraints to represent an upward-closed
set. The basic idea of our approach, building increasingly precise abstractions
by taking more and more local states into account, is orthogonal to the works
mentioned above. Our approach can be extended to other symbolic methods for
representing upward-closed sets.

In [17], the author also uses an iterative approach based on BDDs to verify
parameterized systems through iteratively computing the backward reachability
for constituent systems of increasing size until a certain convergence condition
is reached. A property is first verified in a system with n instances of the user
process and, if the property does hold, the property will be checked against
a system with n + 1 instances. Instead of an upward-abstraction as used in
our approach, the author actually uses a downward abstraction of the original
system. At the same time, the termination of the approach depends on a very
restrictive condition, i.e. δ-deflectable DWS (Discrete Well Structured), and thus
it is only applicable to a very small subset of parameterized systems.

An incrementally refinement approach for the verification of parameterized sys-
tems is also introduced in [18]. Based on forward reachability analysis, the authors
proposed an approach for the verification of parameterized systems based on an in-
ductively calculated cut-off on the maximum length of paths needed to be explored.
However, that kind cut-offs do not exist for the backward reachability analysis of
parameterized systems conducted in this paper. The finiteness of state space has to
completely depend on the well-quasi-orderingness of parameterized systems. The
work given in [19] is also highly related to ours. The authors present a symbolic ex-
ploration algorithm that avoids the dimensionality problem by carefully schedul-
ing which counters to track at any moment during the search. However, they only
consider the concurrent software with a finite number of processes.

7 Conclusion

Based on bounded backward reachability graphs, n novel approach is proposed
for the verification of parameterized systems. A verification problem deciding if a
property specified by an automata, regulating a set of undesired behaviors, holds

www.manaraa.com

234 Q. Yang et al.

in a parameterized system, is turned into a series of sub verification problems
with low dimensions, which tend to have much smaller state spaces. Experi-
ment results show that the algorithm outperforms typical backward reachability
analysis algorithms in many of the example problems.

Although only safety properties are discussed in this paper, the approach can
be extended to liveness properties in Büchi Automata. In addition, we used a
random order to decide which state of the user process should be considered
next. It might be possible to heuristically find an optimal ordering to further
improve verification efficiencies.

References

1. Zuck, L.D., Pnueli, A.: Model checking and abstraction to the aid of parameterized
systems (a survey). Computer Languages, Systems & Structures 30(3-4), 139–169
(2004)

2. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

3. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J.
ACM 39(3), 675–735 (1992)

4. Emerson, E.A., Namjoshi, K.S.: On model checking for non-deterministic infinite-
state systems. In: Logic in Computer Science, pp. 70–80 (1998)

5. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
LICS 1999: Proceedings of the 14th Annual IEEE Symposium on Logic in Com-
puter Science, p. 352. IEEE Computer Society, Washington, DC (1999)

6. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems
for infinite-state systems. In: LICS 1996: Proceedings of the 11th Annual IEEE
Symposium on Logic in Computer Science, pp. 313–321. IEEE Computer Society,
Washington, DC (1996)

7. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere? Theor.
Comput. Sci. 256(1-2), 63–92 (2001)

8. Delzanno, G.: Constraint-Based Model Checking for Parameterized Synchronous
Systems. In: Armando, A. (ed.) FroCos 2002. LNCS (LNAI), vol. 2309, pp. 72–318.
Springer, Heidelberg (2002)

9. Delzanno, G., Raskin, J.-F., Van Begin, L.: Attacking Symbolic State Explosion. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 298–310.
Springer, Heidelberg (2001)

10. Delzanno, G., Raskin, J.-F.: Symbolic Representation of Upward-Closed Sets. In:
Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, pp. 426–440. Springer, Heidelberg
(2000)

11. Delzanno, G., Esparza, J., Podelski, A.: Constraint-Based Analysis of Broadcast
Protocols. In: Flum, J., Rodŕıguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683,
pp. 50–66. Springer, Heidelberg (1999)

12. Esparza, J.: Verification of Systems with an Infinite State Space. In: Cassez, F.,
Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 183–186.
Springer, Heidelberg (2001)

13. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: Meyer, A. (ed.) Proceedings of the First An-
nual IEEE Symp. on Logic in Computer Science, LICS 1986, pp. 332–344. IEEE
Computer Society Press (1986)

www.manaraa.com

Attacking the Dimensionality Problem of Parameterized Systems 235

14. Dwyer, M.B., Clarke, L.A., Cobleigh, J.M., Naumovich, G.: Flow analysis for
verifying properties of concurrent software systems. ACM Trans. Softw. Eng.
Methodol. 13(4), 359–430 (2004)

15. Delzanno, G.: Constraint-based verification of parameterized cache coherence pro-
tocols. Form. Methods Syst. Des. 23(3), 257–301 (2003)

16. Dwyer, M.B., Person, S., Elbaum, S.G.: Controlling factors in evaluating path-
sensitive error detection techniques. In: Young, M., Devanbu, P.T. (eds.) SIGSOFT
FSE, pp. 92–104. ACM (2006)

17. Bingham, J.D.: A new approach to upward-closed set backward reachability anal-
ysis. Electr. Notes Theor. Comput. Sci. 138(3), 37–48 (2005)

18. Yang, Q., Li, M.: A cut-off approach for bounded verification of parameterized sys-
tems. In: Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering, ICSE 2010, vol. 1, pp. 345–354. ACM, New York (2010)

19. Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Symbolic Counter Abstraction
for Concurrent Software. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 64–78. Springer, Heidelberg (2009)

www.manaraa.com

Refinement-Based Modeling of 3D NoCs

Maryam Kamali1,2, Luigia Petre1, Kaisa Sere1, and Masoud Daneshtalab3

1 Åbo Akademi University, Finland
2 Turku Centre for Computer Science (TUCS), Finland

3 University of Turku, Finland

Abstract. Three-dimensional Networks-on-Chip (3D NoC) have recently
emerged essentially via the stacking of multiple layers of two-dimensional
NoCs. The resulting structures can support a very high level of paral-
lelism for both communication and computation as well as higher speeds,
at the cost of increased complexity. To address the potential problems
due to the highly complex NoCs, we study them with formal methods. In
particular, we base our study on the refinement relation between mod-
els of the same system. We propose three abstract models of 3D NoCs,
M0, M1, and M2 so that M0 � M1 � M2, where ‘�’ denotes the re-
finement relation. Each of these models provides templates for commu-
nication constraints and guarantees the communication correctness. We
then show how to employ one of these models for reasoning about the
communication correctness of the XYZ-routing algorithm.

1 Introduction

The Network-on-Chip (NoC) architecture paradigm, based on a modular packet-
switching mechanism, can address many of the on-chip communication design
issues such as performance limitations of long interconnects and the integration
of high numbers of Intellectual Property (IP) cores on a chip. However, the
2D-chip fabrication technology faces many challenges in the deep submicron
regime even when employing NoC architectures, e.g, the design of the clock-tree
network for large chips, limited floor-planning choices, the increase of both the
wire delay and power consumption, the integration of various components that
are digital, analog, MEMS and RF, etc. Three Dimensional Integrated Circuits
(3D ICs) have been emerging as a viable candidate to achieve better performance
and package density as compared to traditional Two Dimensional (2D) ICs.
In addition, combining the benefits of 3D ICs and NoC schemes provides a
significant performance gain for 3D architectures [13,27,22].

Three dimensional Networks-on-Chip (3D NoCs) [13] provide more reliable
interconnections due to the increased number of links between components. Due
to their promise of parallelism and efficiency, 3D NoCs have a critical role in
leading towards reliable computing platforms. However, the majority of their
evaluation approaches are simulation-based tools, such as XMulator [25], Noxim
[26], etc. Simulation-based approaches are usually applied in the late stages of
design and are limited, e.g., by the length of time that a system is simulated.

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 236–252, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

Refinement-Based Modeling of 3D NoCs 237

This means that exhaustive checking of all the system states is impossible in
practice for complex 3D NoCs and thus, simulation is not suitable for verifying
the correctness of a NoC design.

Another approach to address this problem is via formal methods. Formal
methods refer to the application of mathematical techniques to the design and
implementation of computer hardware and software. Prominent examples of ap-
plying formal methods are provided by, e.g., Intel [16,19] and IBM [21] for
formally verifying hardware or systems-on-chip (SoC) [15]. By using rigorous
mathematical techniques, it is possible to deliver provably correct systems. For-
mal methods are based on the capture of system requirements in a specific, pre-
cise format. Importantly, such a format can be analyzed for various properties
and, if the formal method permits, also stepwise developed until an implemen-
tation is formed. By following such a formal development, we are sure that the
final result correctly implements the requirements of the system.

Much of the research concerning the 3D NoC design is concentrated on var-
ious bottom-up approaches, such as the study of routing algorithms [6,20] or
the design of dedicated 3D NoC architectures [29] where parameters such as
hop count or power consumption are improved. Here we are concerned with a
reverse, top-down approach where we start from simple models and add com-
plexity later. There are already research results regarding the detection of faults
as well as debugging in the early stages of NoC design. A generic model for spec-
ifying and verifying NoC systems is presented in [10] where the formal verifica-
tion is addressed with the ACL2 theorem prover, a mechanized proof tool. This
tool produces a set of proof obligations that should be discharged for particular
NoC instances. This generic model has been used for verification of functionality
features in 2D-NoC systems. Another formal approach to the development of
the NoC systems employing the B-action systems formalism has been described
in [28], where the focus is on the formal specification of communication routers. A
framework for modeling 2D-NoC systems by composing more advanced routing
components out of simpler ones, is proposed there.

In this paper, we go one step further and propose a top-down formalization
of the early 3D NoC design. The formal method we employ is Event-B [2] which
comes with the associated tool Rodin [1,30]. One of the main features of Event-
B is that the system development is done in a stepwise manner that eventually
leads to a system implementation. The stepwise development is captured by the
refinement [4,5] relation between models of the same system, so that a high-level
model of a system is transformed by a sequence of correctness-preserving steps
into a more detailed and efficient model that satisfies the original specification.
We specify here the general structure of a 3D NoC at a high level of abstraction in
Event-B. The specification formulates the main constraints of the communication
model, needed to prove its correctness. Our definition for correctness at this
abstract level of modeling is to show that a package injected in the network
is eventually received at the destination. We propose three different abstract
models M0, M1, and M2 for a 3D NoC so that M0 � M1 � M2, where ‘�’
denotes the refinement relation. Furthermore, each of these models can be refined

www.manaraa.com

238 M. Kamali et al.

into more concrete models to define specific 3D NoC designs in the early stages
of the system development. When the concrete models preserve the correctness
properties of the abstract models, we guarantee the correctness of the concrete
3D NoC designs. As an application of the general 3D NoC designs, we model the
XYZ routing algorithm by refining the M2 abstract model. To verify the XYZ
routing algorithm, we generate the proof obligations using the Rodin tool and
discharge them automatically or interactively.

We proceed as follows. In Section 2 we overview the Event-B formal method
to the extent needed in this paper. In Section 3 we propose three increasingly
more detailed formal models for a 3D NoC together with the constraints for
proving correctness. In Section 4 we illustrate the formal modeling of the XYZ
routing algorithm as a case study. In Section 5 we discuss the proof obligations
while in Section 6 we present concluding remarks and future work.

2 Preliminaries

Event-B [2,1] is an extension of the B formalism [3,28] for specifying distributed
and reactive systems. A system model is gradually specified on increasing levels
of abstraction, always ensuring that a more concrete model is a correct imple-
mentation of an abstract model. The language and proof theory of Event-B
are based on logic and set theory. The correctness of the stepwise construction
of formal models is ensured by discharging a set of proof obligations: if these
obligations hold, then the development is mathematically shown to be correct.
Event-B comes with the associated tool Rodin [1,30], which automatically dis-
charges part of the proof obligations and also provides the means for the user to
discharge interactively the remaining proofs.

Each Event-B model consists of two components called context and machine.
A context describes the static part of the model, i.e., it introduces new types
and constants. The properties of these types and constants are gathered as a list
of axioms. A machine represents the dynamic part of the model, consisting of
variables that define the state of the model and operations called events. The
system properties that should be preserved during the execution are formulated
as a list of invariant predicates over the state of the model.

An event, modeling state changes, is composed of a guard and an action. The
guard is the necessary condition under which an event might occur; if the guard
holds, we call the event enabled. The action determines the way in which the state
variables change when the event occurs. For initializing the system, a sequence
of actions is defined. When the guards of several events hold at the same time,
then only one event is non-deterministically chosen for execution. If some events
have no variables in common and are enabled at the same time, then they can
be considered to be executed in parallel since their sequential execution in any
order gives the same result. For all practical purposes, this execution model is
parallel and can be implemented as such when the model is refined to code.
Events can be declared as anticipated, meaning that in the future refinements
we need to set out a natural number expression called variant and prove that it

www.manaraa.com

Refinement-Based Modeling of 3D NoCs 239

is decreased by this event. Events can also be convergent, meaning that in the
current machine there is a variant that decreases when this event is chosen for
execution. Thus, an anticipated event is not convergent in the current machine
but should become so in a future refinement of that machine.

A model can be developed by a number of correctness preserving steps called
refinements [4,5]. One form of model refinement can add new data and new
events on top of the already existing data and behavior but in such a way that
the introduced behavior does not contradict or take over the abstract machine
behavior. This form of stepwise construction is referred to as superposition re-
finement [18,9]. We may also use other refinement forms, e.g., algorithmic refine-
ment [8]. In this case, an event of an abstract machine can be refined by several
corresponding events in a refined machine. This will model different branches of
execution, that can, for instance, take place in parallel and thus can improve the
algorithmic efficiency. In this paper, we use only superposition refinement.

3 Three Abstract Models for the 3D NoC: M0, M1, M2

In this section we formally develop three high-level models M0, M1, and M2

for the 3D NoC. Our models are at three increasing levels of detail so that
each model is a refinement of the previous one: M0 � M1 � M2. In the initial
model, we specify a network of nodes and define the correctness properties of
this network based on a specific data structure called pool, as suggested by [2].
In the second model, we add new data and events to model the 3D mesh-based
NoC architecture; besides, we specify the channels between nodes. In the third
model, we model buffers for nodes and refine the communication model.

By starting from an initial model that is rather abstract, i.e., without detailing
the communication topology, we obtain a rather general starting point that can
later be refined to various topologies. Moreover, adding channels and ports only
in the second model leads to a clean modelling of the basic communication
mechanism (via routing and switching) in the initial model; the required detail
(of channels and ports) are not needed for understanding the communication
mechanism. Adding buffers in the third model illustrates an extra level of detail.
Networks where the nodes have no buffers for communication will, therefore,
employ the second model as their abstraction and not the third.

3.1 The Initial Model M0

The first model M0 that we construct is rather abstract: we do not consider
the numerous parts of the network such as channels or buffers; they will be
introduced in subsequent refinements. M0 will thus allow us to reason about the
system very abstractly [2]. The model M0 is formed of the static part and the
dynamic part, as follows.

The Static Part. The static part of our model is described in Fig. 1 and
contains the sets MESSAGES, ROUTER, DATA and the constants data, des,
src and Neigh. The message identifiers are modeled by the non-empty and finite

www.manaraa.com

240 M. Kamali et al.

MESSAGES set. We use the following modeling idea for messages. A message id
in the MESSAGES set relates to a triple (data, source, destination) where data
is an element of the DATA set, source models the source node where a message
is injected, and destination models the destination node where a message should
be received. A message should not be destined to its source node. The set of
network nodes and data are modeled by the sets ROUTER (finite and non-
empty) and DATA (finite and non-empty), respectively. The relation Neigh (non-
empty, symmetric, and non-reflexive) models the neighbor structure i.e., which
node can communicate with which node.

SETS MESSAGES ROUTER DATA
CONSTANTS data des src Neigh
AXIOMS

MESSAGES �= ∅ ∧ finite(MESSAGES)
ROUTER �= ∅ ∧ finite(ROUTER)
DATA �= ∅ ∧ finite(DATA)
data ∈ MESSAGES → DATA
src ∈ MESSAGES → ROUTER ∧ des ∈ MESSAGES → ROUTER
∀m, sp, dp ·m ∈ MESSAGES ∧ sp ∈ ROUTER ∧ dp ∈ ROUTER

∧m �→ sp ∈ src ∧ m �→ dp ∈ des ⇒ sp �= dp
Neigh ∈ ROUTER ↔ ROUTER
Neigh �= ∅ ∧ Neigh = Neigh−1 ∧ dom(Neigh) � id ∩ Neigh = ∅

Fig. 1. M0: the static part

To define structure types such as records in Event-B, we use functions to
represent attributes. Therefore, our modeling idea translates to the functions
data, src and des with ranges DATA, ROUTER, and ROUTER, respectively.

The Dynamic Part. In our network model we use the following condition for
modeling the communication correctness: the messages in the network will even-
tually reach their destinations. For this, we define two message subsets and one
partial message-to-node map as machine variables: sent pool ⊆MESSAGES,
received pool⊆MESSAGES and moving pool∈sent pool 	→ROUTER.

The sent pool subset denotes the list of messages injected into the network.
The sent pool subset is updated whenever a new message is injected into the net-
work, while the moving pool subset denotes the current position of traveling mes-
sages. All the messages injected into the network are added to the moving pool
and whenever a message is routed from a node to another one, the current po-
sition of that message is updated in the moving pool. The received pool subset
denotes the list of messages received from the network by destination nodes.
Whenever a message is received at its destination, it will be added to received pool
and removed from moving pool. The behavior of message pools is illustrated in
Fig. 2.

To model the communication and the message pool functions, we define three
events as explained below. The sent message event described in Fig. 3(a) han-
dles the injection of a new message into the network. Whenever a message is
injected into the network both sent pool as well as moving pool are updated.

www.manaraa.com

Refinement-Based Modeling of 3D NoCs 241

Fig. 2. Message Pools

Event sent message =̂
any
current msg

where
current msg ∈ MESSAGES
current msg /∈ sent pool

then
sent pool :=sent pool∪{current msg}
moving pool := moving pool
∪{current msg �→src(current msg)}

end

(a) Message Injection

Event routing =̂
begin
skip

end
Event switching =̂
Statusanticipated

any
current msg new position

where
current msg ∈ dom(moving pool)
des(current msg) �=
moving pool(current msg)

new position �→moving pool(current msg)
∈Neigh

new position �= src(current msg)
then
moving pool(current msg):=new position

end

(b) Routing and Switching

Fig. 3. M0 Events

A message in moving pool should be routed toward its destination. This is
composed of two actions, one for deciding which node would be the next one
(routing) and the other for transferring the message to that node (switching).
These two actions are available for all the nodes, including the source, the des-
tination as well as all the intermediate nodes and are modeled respectively by
the routing and switching events shown in Fig. 3(b). In this abstract model we
do not have any routing decisions, hence, the routing event is modeled by skip.
The switching event in the M0 model only transfers a message from the current
node to one of its neighbors nondeterministically and updates the moving pool
by changing the current position of a message. To avoid cycling, we do not al-
low a message to return to its source. The reason for not considering a specific
routing algorithm is that it makes our initial model more general and reusable
for a wide variety of routing algorithms implementations. The switching event
has the status anticipated.

Event received message =̂
Status convergent

any
current msg

where
current msg ∈ dom(moving pool)
des(current msg) = moving pool(current msg)

then
moving pool := {current msg} �− moving pool
received pool := received pool ∪ {current msg}

end

Fig. 4. M0: Received message Event

www.manaraa.com

242 M. Kamali et al.

The received message event shown in Fig. 4 adds a message received at its
destination to received pool and removes the message from moving pool. This
event is convergent: if new messages are not injected to the network for a certain
time, all the messages will be received at their destinations. This is proved by
means of the (sent pool \ received pool) variant denoting the difference between
the sets sent pool and received pool.

In order to prove the communication correctness, we need to prove that the
sent pool subset eventually becomes equal with the received pool subset and
the moving pool subset is empty when all the messages are received at their
destinations. These properties are formulated in Fig. 5 as invariants.

INVARIANTS
dom(moving pool) ⊆ sent pool
received pool ∩ dom(moving pool) = ∅

sent pool = received pool ⇔ moving pool = ∅

∀msg ·msg /∈ sent pool ⇒ msg /∈ received pool
sent pool \ dom(moving pool) = received pool
sent pool \ received pool = dom(moving pool)

Fig. 5. M0: Invariants (Pool Modeling)

M0 is a general specification of a general network and will be refined to model
3D NoC communication designs in the following. Moreover, the model provides
the necessary properties that should be preserved by refinement. These proper-
ties, that guarantee the overall communication correctness, are defined as the
list of invariants.

3.2 The Second Model M1

Transferring a message from a node to its neighbor in the model M0 is achieved
simply by copying the message from a node to another. In this section we refine
the initial model M0 to also specify channels specific to the 3D NoCs. To specify
channels, we need a 3D NoC architecture. There are a number of 3D NoC archi-
tectures, e.g., mesh-based [13], tree-based [14]. We consider here NoCs with 3D
mesh topologies. The 3D mesh-based NoC (Fig. 6(a)) consists of N = m ∗ n ∗ k
nodes; each node has an associated integer coordinate triple (x, y, z), 0 < x ≤ m,
0 < y ≤ n, 0 < z ≤ k.

Fig. 6. (a) 3D Mesh-based NoC architecture (b) Router channels

www.manaraa.com

Refinement-Based Modeling of 3D NoCs 243

Our 3D NoC architecture employs seven-port routers: one port to the IP
block, one port to above and below routers, and one in each cardinal direction
(North, South, East and West), as shown in Fig. 6(b).

The Static Part. We extend the static part of the initial model M0 in three
ways: we map routers to coordinate triples, we add new properties for the neigh
relation based on the coordinate triples, and we model ports and channels for
the 3D NoC. In order to map routers to the coordinate triples, we define four
constants: coordX , coordY , coordZ and mk position as shown in Fig. 7. The
coordX , coordY and coordZ constants represent coordinate triples (x, y, z) and
the mk position constant is a map associating each router to a position in space
given by the coordinates. The crossbarX , crossbarY and crossbarZ constants
model the number of nodes in X, Y and Z coordinate in the network, respectively.

Two nodes with coordinates (xi, yi, zi) and (xj , yj , zj) are connected by a
communication channel if and only if |xi−xj |+ |yi−yj |+ |zi−zj| = 1. To model
this neighbor structure, the Neigh relation in the initial model M0 is restricted
in this model by adding the axiom in Fig. 8.

SETS CHANNEL PORTS
CONSTANTS coordX coordY coordZ mk position

crossbarX crossbarY crossbarZ mk channel
AXIOMS

crossbarX ∈ N1 ∧ crossbarY ∈ N1 ∧ crossbarZ ∈ N1

mk position ∈ (1 .. crossbarX) × (1 .. crossbarY) × (1 .. crossbarZ) �� ROUTER
coordX ∈ ROUTER � (1 .. crossbarX)
coordY ∈ ROUTER � (1 .. crossbarY)
coordZ ∈ ROUTER � (1 .. crossbarZ)
∀xx , yy, zz ·xx ∈ 1 .. crossbarX ∧ yy ∈ 1 .. crossbarY ∧ zz ∈ 1 .. crossbarZ

⇒coordX (mk position(xx �→ yy �→ zz)) = xx
∧coordY (mk position(xx �→ yy �→ zz)) = yy
∧coordZ (mk position(xx �→ yy �→ zz)) = zz

∀pos1 ,pos2 ·pos1 ∈ ROUTER ∧ pos2 ∈ ROUTER ∧ pos1 �= pos2
⇒coordX (pos1) �= coordX (pos2) ∨ coordY (pos1) �= coordY (pos2)∨

coordZ (pos1) �= coordZ (pos2)

Fig. 7. M1: Static Part 1

We define the CHANNEL set to model the communication channels between
routers and we define the PORTS set to define the input and output ports of nodes
in the static part of the second model. To show how two neighbors are connected
to each other through channels, we define the def channel and mk channel rela-
tions with the help of axioms, as shown in Fig. 8. The def channel relation models
the relation of a port of a node to the corresponding port of its neighbor and the
mk channel relation maps the port relations to channels.

AXIOMS
∀r1 , r2 ·r1 �→ r2 ∈ Neigh ⇔ abs(coordX (r1) − coordX (r2)) + abs(coordY (r1)

−coordY (r2)) + abs(coordZ (r1) − coordZ (r2)) = 1
def channel ∈ (ROUTER × PORTS) → (ROUTER × PORTS)
partition(PORTS , {Ein}, {Eout}, {Win}, {Wout}, {Nin}, {Nout}, {Sin}

, {Sout}, {Uin}, {Uout}, {Din}, {Dout}, {Lin}, {Lout})
mk channel ∈ def channel �� CHANNELS

Fig. 8. M1: Static Part 2

www.manaraa.com

244 M. Kamali et al.

East and west ports of neighbor nodes with different X coordinate are related
to each other through a channel. For instance, as shown in Fig. 9, Ein and Eout
ports of node (1, 1, 1) are connected to Wout and Win ports of node (2, 1, 1)
through a channel ((1, 1, 1) 	→ Eout) 	→ ((2, 1, 1) 	→ Win) and ((2, 1, 1) 	→
Wout) 	→ ((1, 1, 1) 	→ Ein) relations in def channel. This connection of the
ports of the neighboring nodes on the X coordinate is modeled by the axiom
shown in Fig. 10. The port relation between neighbors on other coordinates is
defined by similar axioms which are not shown here due to lack of space.

Fig. 9. Channels in 3D Mesh-Based NoCs

The Dynamic Part. In the static part of the model M1, we define the 3D
mesh NoC architecture with the triple coordinate of nodes and their channels.
In the dynamic part of the model M1, we refine the dynamic part of the model
M0 to specify the transferring of data through the communication channels, so
that the overall correctness of communication holds.

The communication channels between routers are considered asynchronous
channels, transferring data upon request. Each channel propagates data as well
as control values. In our case, a control value models the fact that a channel is
occupied by a message. When a message is injected to a channel, the control
value of that channel is set to busy and when the message is received at the
other side of channel, the control value of that channel is set to free.

AXIOMS
∀n, m, i, j ·(n �→ i) �→ (m �→ j) ∈ def channel ∧ i = Wout ∧ j = Ein
⇔coordX (n) − coordX (m) = 1 ∧ coordY (n) = coordY (m) ∧ coordZ (n) = coordZ (m)

∀n, m, i, j ·(n �→ i) �→ (m �→ j) ∈ def channel ∧ i = Eout ∧ j = Win
⇔coordX (n) − coordX (m) = −1 ∧ coordY (n) = coordY (m) ∧ coordZ (n) = coordZ (m)

Fig. 10. M1: Static Part 3

In order to model the transferring of messages through the communication
channels, the variables channel state and channel content are defined in the
second model to represent the control and the data value on each channel. Each
channel can have the busy or free state. When the channel receives data, its state
switches from free to busy and the message is added to the channel content.
When the channel transfers data to the end, channel state changes to free
and the channel is released by removing the message from channel content. The
invariants of M1 model that, when a channel is released, then its content is empty
and can thus receive the next message; when a channel is busy, the message is
in the channel. We illustrate these invariants in Fig.11.

www.manaraa.com

Refinement-Based Modeling of 3D NoCs 245

VARIABLES
channel content channel state

INVARIANTS
channel content ∈ CHANNELS �� MESSAGES
dom(channel content) = channel state−1 [{busy}]
channel state ∈ CHANNELS → state
dom(channel state) = ran(mk channel)
ran(channel content) ⊆ dom(moving pool)
∀msg ·msg ∈ dom(moving pool) ∧ des(msg) = moving pool(msg)

⇒msg /∈ ran(channel content)

Fig. 11. M1: Invariants (channels)

The switching event is now refined to transfer a message to the next router
through channels. In order to model this, we add a new event out to channel as
shown in Fig.15 (Appendix) to model pushing a message in the channel. This
event is enabled when there is a message for transferring in a node and the
channel between the node and the next node is free. In addition, we refine the
switching event as shown in Fig.16 (Appendix) to model releasing the channel
by receiving the message at the end of the channel. This event is enabled when
a message is in the channel.

3.3 The Third Model M2

In this model, we define buffers for the ports of the nodes and refine the second
model to model the communication in 3D NoCs by considering these buffers.

The Static Part. The context of the third model contains a single constant
buffer size ∈ N1, which is a strict natural number denoting the maximum
number of messages allowed in a buffer.

The Dynamic Part. Each node has fourteen buffers, each assigned to node
ports; those assigned to output ports are called output buffers and those assigned
to input ports are called input buffers. When there is a message in an output
buffer of a node, the node can transfer it to the channel provided that the channel
is free. If in the other side of the channel the input buffer has an empty place,
the message is transferred to the input buffer of the next node and the channel
is released; otherwise, the channel will be busy until an empty place appears
in the input buffer. To model the buffer structure in the third model we add
a new machine variable buffer content that models the current content of all
buffers. Indeed, adding and removing messages in/from buffers is modeled by
the buffer content variable.

In order to guarantee the correctness of the buffer modeling, we need the
invariants shown Fig.12. They model that the content of a buffer never becomes
more than its size. In addition, while a message is in the moving pool, i.e., it
has not reached to its destination, it must be either in a channel or in a buffer.

www.manaraa.com

246 M. Kamali et al.

VARIABLES
buffer content

INVARIANTS
buffer content ∈ MESSAGES �→ (ROUTER × PORTS)
dom(buffer content) ∪ ran(channel content) = dom(moving pool)
dom(buffer content) ∩ ran(channel content) = ∅

∀b ·b ∈ ran(buffer content) ⇒ card(buffer content � {b}) ∈ 1 .. buffer size

Fig. 12. M2: Invariants (buffer)

The switching event, as shown in Fig.17 (Appendix), is refined to be enabled
when there is an input buffer with at least one empty place at the end of the
channel. Then, besides releasing the channel, the message in the channel is trans-
fered to the input buffer. The status of the switching event is still anticipated
since we do not store. The out to channel event, as shown in Fig.17, is refined to
be enabled when there is a message in an output buffer meaning that the mes-
sage is removed from buffer. The sent message and received message events
are refined so that they update the buffer content variable as shown in Fig. 18
(Appendix).

Event routing =̂
extends routing

any
msg router in p out p

where
in p ∈ {Win, Ein, Sin, Nin, Uin, Din, Lin}
out p ∈ {Wout, Eout, Sout, Nout, Uout, Dout, Lout}
(in p = Win ∧ out p �= Wout) ∨ (in p = Ein ∧ out p �= Eout)
∨(in p = Sin ∧ out p �= Sout) ∨ (in p = Nin ∧ out p �= Nout)
∨(in p = Uin ∧ out p �= Uout) ∨ (in p = Din ∧ out p �= Dout)
∨(in p = Lin ∧ out p �= Lout)

msg �→ (router �→ in p) ∈ buffer content
card(buffer content � {router �→ out p}) < buffer size

then
buffer content(msg) := router �→ out p

end

Fig. 13. M2: Routing Event

At this level of abstraction, we refine the routing event (modeled as skip in the
previous models) as shown in Fig.13. A routing algorithm decides on choosing
an output channel for a message in an input channel. As we present a general
model, we do not consider any specific routing algorithm and we model routing
decision nondeterministically. That is, when there is a message in an input buffer
of a node, it can be routed to any output buffer of the node except the output
buffer in the same direction with the input buffer e.g., a message in the northern
input buffer cannot be routed to the northern output buffer. We also check that
there is enough space in the chosen buffer. We have this constraint to prevent
a cycling problem in the communication that would lead to deadlock in the
interconnection network.

We do not change the status of the switching event in this refinement step. Thus,
its status is still anticipated. In order to have it convergent, we need to define a
variant based on some ordering relation of the message identifiers. This can be
achieved by modeling a channel dependency graph but is not part of this paper.

www.manaraa.com

Refinement-Based Modeling of 3D NoCs 247

A more concrete 3D NoC design can be modeled by refining one or more of
these three general models and by verifying whether the design can guarantee the
overall communication correctness. In the following, we model the XYZ routing
algorithm by refining the third model M2 and verifying whether it guarantees
the overall communication correctness.

4 Case Study: The XYZ Routing Algorithm

In this section, we formally develop a dimension-order routing (DOR) algorithm
which is a deterministic routing scheme widely used for NoCs [24]. To make the
best use of the regularity of the topology, the dimension-order routing transfers
packets along minimal paths in the traversing of the low dimension first until no
further move is needed in this dimension. Then, they go along the next dimension
and so forth until they reach their destination. For example, the dimension-
order routing in the 3D NoC called the XYZ routing algorithm uses Z dimension
channels after using Y and X dimension channels. Packets travel along the X
dimension, then along the Y dimension and finally along the Z dimension. Thus,
if current node = (cx, cy, cz) is a node containing a message addressed to node
destination = (dx, dy, dz), then the XYZ routing function Rxyz(,) is defined as
follows:

Rxyz((cx, cy, cz), (dx, dy, dz)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(cx−1, cy, cz) iff cx > dx

(cx+1, cy, cz) iff cx < dx

(cx, cy−1, cz) iff cx = dx ∧ cy > dy

(cx, cy+1, cz) iff cx = dx ∧ cy < dy

(cx, cy, cz−1) iff cx = dx ∧ cy = dy ∧ cz > dz

(cx, cy, cz+1) iff cx = dx ∧ cy = dy ∧ cz < dz

In order to model the XYZ routing algorithm based on the third general model,
we have to refine the routing event which is nondeterministically defined. As
shown in the above formula, a message can be transfered to six different di-
rections based on its current position and destination. Therefore, we refine the
routing event in the previous model to six routing events so that their guards
are based on the routing formula. As an example of the routing event, we show
in Fig.14 the situation where cx is greater than dx. All the correctness properties
defined for the abstract models are proved. Hence, the XYZ routing algorithm
guarantees the overall communication correctness.

Event routing X dec =̂
extends routing

where
coordX (router) > coordX (des(msg)) ∧ out p = Wout

then
buffer content(msg) := router �→ out p

end

Fig. 14. The XYZ Model: Routing Event (cx > dx)

www.manaraa.com

248 M. Kamali et al.

5 Verification of the Models

In order to prove that the models satisfy their correctness properties we have to
check that they respect their invariants, i.e., the pool properties for our models.
To prove this, we have generated the proof obligations for all the models using
the Rodin tool: part of the proof obligations were automatically discharged and
the rest of could be proved interactively. The proof statistics for our models are
shown in Table 1. These figures express the number of proof obligations gener-
ated by the Rodin platform as well as the number of obligations automatically
discharged by the platform and those interactively proved. A high number of in-
teractive proofs were due to reasoning about set comprehension and unions, not
currently supported automatically in Rodin. In addition, the interactive proving
often involved manually suggesting values to discharging various properties con-
taining logical disjunctions or existential quantifiers. Extra proving was due to
the fact that currently, we cannot create proof scripts and reuse them whenever
needed in RODIN. Thus, in some cases we had to manually repeat very similar
or almost identical proofs.

Table 1. Proof Statistics

Model Number of Proof Automatically Interactively

Obligations Discharged Discharged

Context 21 6(28%) 15(72%)

M0 Model 38 34(89%) 4(11%)

M1 Model 33 11(33%) 22(67%)

M2 Model 33 7(21%) 26(79%)

XYZ Model 13 0(0%) 13(100%)

Total 144 64(45%) 80(55%)

6 Conclusions

In this paper, we have proposed the abstract models M0, M1, and M2 at three
increasing levels of detail for 3D NoCs. These can be used for modeling and
verifying 3D NoC-designs in the early stages of the system development. We
have also shown how to apply such an abstract model to verify a concrete 3D
NoC routing algorithm. Most importantly, the overall correctness of the com-
munication models (expressed using a special data structure called pool [2]) is
guaranteed for the 3D NoCs. We have achieved this by modeling the correct-
ness condition via invariants; as each model added detail to the previous model,
the invariant needed to reflect these added details in a consistent manner. In
order for the invariant to be satisfied by a model, a number of proof obliga-
tions needs to be discharged. Moreover, in order for the models to respect the
refinement relation M0 � M1 � M2, i.e., to develop each other in a provably

www.manaraa.com

Refinement-Based Modeling of 3D NoCs 249

correct manner, some other proof obligations need to be generated. As we have
employed the RODIN platform to specify our 3D NoC modeling, many of these
proof obligations have been automatically discharged, while for the rest it was
possible to discharge them interactively. We note an interesting property of our
communication correctness condition, that essentially reduces to the fact that all
the messages will eventually reach their destinations. This is a typical liveness
property that we model here as an invariant, also based on the variant expression
ensuring that our models will eventually terminate. The liveness property can
also be verified via a model checker, for instance Pro-B [31], that is associated
to the RODIN platform.

The NoC communication can be either unicast or multicast [23]. In the unicast
communication a message is sent from a source node to a single destination node,
while in the multicast communication a message is sent from a source node to an
arbitrary set of destination nodes. We have considered here sending a message
from a source to a single destination, hence modeled unicast communication. One
of our future plans is to extend the abstract models M0, M1, and M2 to also
specify multicast communication and as a case study we target a novel routing
protocol for multicast traffic called HAMUM [12], based on the extended 3D
NoC model. HAMUM, Hamiltonian Adaptive path for both the Multicast and
Unicast Model, is a new adaptive routing model based on Hamiltonian path for
both the multicast and unicast traffic. An interesting property that we expect
out of the multicast modeling is to have the case study reusing the M2 model
via an algorithmic refinement instead of a superposition one like we now have.
This is because we can have several messages that could be routed in parallel
using different events via several channels. Our XYZ routing employs already
several events for the routing instead of the abstract routing event of the model
M2, but only one of them is enabled at all moments.

By strengthening the invariants we can verify more diverse properties of the
3D NoC designs, for instance we could prove deadlock-freedom for routing al-
gorithms - currently, one of the most challenging properties for the 3D NoCs.
For this, we envision an extension of the abstract 3D NoC models with an ex-
tra channel dependency graph to reason about deadlock-freedom; the HAMUM
algorithm can then be shown as deadlock-free.

References

1. Abrial, J.R.: A System Development Process with Event-B and the Rodin Platform.
In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS,
vol. 4789, pp. 1–3. Springer, Heidelberg (2007)

2. Abrial, J.R.: Modeling in Event-B: System and Software Design. Cambridge Uni-
versity Press (2010)

3. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

4. Abrial, J.R., Cansell, D., Mery, D.: Refinement and Reachability in Even-B. In:
4th International Conference of B and Z Users, pp. 129–148 (2005)

www.manaraa.com

250 M. Kamali et al.

5. Abrial, J.R., Hallerstede, S.: Refinement, Decomposition and Instantiation of Dis-
crete Models: Application to Event-B. In: Fundamenta Informaticae, pp. 1–28
(2007)

6. Andreasson, D., Kumar, S.: Slack-Time Aware-Routing in NoC Systems. In: IEEE
International Symposium on Circuits and Systems, pp. 2353–2356. IEEE (2005)

7. Arditi, L., Berry, G., Kishinevsky, M.: Late Design Changes (ECOs) for Sequen-
tially Optimized Esterel Designs. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004.
LNCS, vol. 3312, pp. 128–143. Springer, Heidelberg (2004)

8. Back, R.J., Sere, K.: Stepwise Refinement of Action Systems. In: van de Snepscheut,
J.L.A. (ed.) MPC 1989. LNCS, vol. 375, pp. 115–138. Springer, Heidelberg (1989)

9. Back, R.J., Sere, K.: Superposition Refinement of Reactive Systems. Formal As-
pects of Computing 8(3), 324–346 (1996)

10. Borrione, D., Helmy, A., Pierre, L., Schmaltz, J.: A Formal Approach to the Ver-
ification of Networks on Chip. EURASIP Journal on Embedded Systems 2009(1),
1–14 (2009)

11. Duan, X., Zhang, D., Sun, X.: A Condition of Deadlock-free Routing in Mesh Net-
work. In: Second International Conference on Intelligent Networks and Intelligent
Systems, pp. 242–245 (2009)

12. Ebrahimi, M., Daneshtalab, M., Liljeberg, P., Tenhunen, H.: HAMUM A Novel
Routing Protocol for Unicast and Multicast Traffic in MPSoCs. In: The 18th Eu-
romicro Conference on Parallel, Distributed and Network-Based Computing (2010)

13. Feero, B.S., Pande, P.: Networks-on-Chip in a Three-Dimensional Environment: A
Performance Evaluation. IEEE Transactions on Computers, 32–45 (2009)

14. Grecu, C., et al.: A Scalable Communication-Centric SoC Interconnect Architec-
ture. In: 5th International Symposiom Quality Electronic Design (ISQED 2004),
pp. 343–348 (2004)

15. Gupta, R., Guernic, P.L., Skuhla, S.K.: Formal methods and models for system
design: a system level perspective. Kluwer Academic Publishers (2004)

16. Harrison, J.: Formal Verification at Intel. In: Symposium on Logic in Computer
Science (2003)

17. Jerger, N.E., Peh, L.S., Lipasti, M.H.: Virtual Circuit Tree Multicasting: A Case
for On-Chip Hardware Multicast Support. In: International Conference Computer
Architecture, China, pp. 229–240 (2008)

18. Katz, S.: A Superimposition Control Construct for Distributed Systems. ACM
Transactions on Programming Languages and Systems, 337–356 (1993)

19. Kaivola, R., Ghughal, R., Narasimhan, N., Telfer, A., Whittemore, J., Pandav,
S., Slobodová, A., Taylor, C., Frolov, V., Reeber, E., Naik, A.: Replacing Testing
with Formal Verification in Intel� CoreTM i7 Processor Execution Engine Valida-
tion. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 414–429.
Springer, Heidelberg (2009)

20. Kim, Y.B., Kim, Y.-B.: Fault-Tolerant Source Routing for Networks-on-Chip. In:
22nd IEEE International Symposium on Defect and Fault Tolerance in VLSI Sys-
tems, pp. 12–20. IEEE Computer Society (2007)

21. Liao, W., Hsiung, P.: Creating a Formal Verification Platform for IBM
CoreConnect-based SoC. In: The 1st International Workshop on Automasted Tech-
nology for Verificatin and Analysis (ATVA 2003), pp. 7–18 (2003)

22. Loi, I., Benini, L.: An Efficient Distributed Memory Interface for Many-Core Plat-
form with 3D Stacked DRAM. In: Proc. of the DATE Conference, Germany,
pp. 99–104 (2010)

www.manaraa.com

Refinement-Based Modeling of 3D NoCs 251

23. Lu, Z., Yin, B., Jantsch, A.: Connection-Oriented Multicasting in Wormhole-
Switched Networks on Chip. In: Emerging VLSI Technologies and Architectures,
pp. 205–211 (2006)

24. Montaana, J.M., Koibuchi, M., Matsutani, H., Amano, H.: Balanced Dimension-
Order Routing for k-ary n-cubes. In: International Conference on Parallel Process-
ing (2009)

25. Nayebi, A., Meraji, S., Shamaei, A., Sarbazi-azad, H.: XMulator: A listener-Based
Integrated Simulation Platform for Interconnection Networks. In: Asia Interna-
tional Conference on Modeling and Simulation, pp. 128–132 (2007)

26. Palesi, M., Holsmark, R., Kumar, S., Catania, V.: Application Specific Routing
Algorithms for Networks on Chip. IEEE Transactions on Parallel and Distributed
Systems, 316–330 (2009)

27. Park, D., et al.: Mira, A Multi-Layered On-Chip Interconnect Router Architecture.
In: ISCA 2008, pp. 251–261 (2008)

28. Tsiopoulos, L., Walden, M.: Formal Development of NoC Systems in B. Nordic
Journal of Computing, 127–145 (2006)

29. Yan, S., Lin, B.: Design of Application-Specific 3D Networks-on-Chip Architec-
tures. In: IEEE International Conference on Computer Design (ICCD 2008),
pp. 142–149 (2008)

30. RODIN Tool Platform, http://www.event-b.org/platform.html
31. ProB Model Checker, http://www.stups.uni-duesseldorf.de/ProB/overview.php

http://www.event-b.org/platform.html
http://www.stups.uni-duesseldorf.de/ProB/overview.php

www.manaraa.com

252 M. Kamali et al.

Appendix

Event out to channel =̂
any new position current msg out p in p
where

current msg ∈ dom(moving pool) ∧ new position ∈ POSITION
moving pool(current msg) �→ new position ∈ Neigh
out p ∈ {Nout, Sout, Wout, Eout, Uout, Dout} ∧ in p ∈ {Nin, Sin, Win, Ein, Uin, Din}
(moving pool(current msg) �→ out p) �→ (new position �→ in p) ∈ dom(mk channel)
channel state(mk channel((moving pool(current msg)�→out p)�→(new position �→in p)))= free
moving pool(current msg) �= des(current msg) ∧ current msg /∈ ran(channel content)

then
channel state(mk channel((moving pool(current msg)�→out p)�→(new position �→in p))):=busy
channel content(mk channel((moving pool(current msg) �→out p) �→ (new position �→ in p)))

:= current msg
end

Fig. 15. M1: Out to Channel Event

Event switching =̂
Status anticipated
extends switching
any current msg new position p1 p2
where

p1 ∈ {Nout, Sout, Wout, Eout, Uout, Dout} ∧ p2 ∈ {Nin, Sin, Win, Ein, Uin, Din}
(moving pool(current msg) �→ p1) �→ (new position �→ p2) ∈ dom(mk channel)
channel state(mk channel((moving pool(current msg)�→p1)�→(new position �→p2)))=busy
current msg =
channel content(mk channel((moving pool(current msg) �→p1) �→ (new position �→p2)))

then
moving pool(current msg) := new position
channel state(mk channel((moving pool(current msg)�→p1)�→(new position �→p2))) := free
channel content := channel content �− {current msg}

end

Fig. 16. M1: Switching Event

Event switching =̂
Status anticipated
extends switching

where
card(buffer content � {new position �→ p2}) < buffer size

then
buffer content := buffer content ∪ {current msg �→ (new position �→ p2)}

end
Event out to channel =̂
extends out to channel

where
card(buffer content � {new position �→ in p}) > 0

then
buffer content :=buffer content\{current msg �→ (moving pool(current msg) �→out p)}

end

Fig. 17. M2: Switching and Out to Channel Events

Event sent message =̂
extends sent message

where
current msg /∈ dom(buffer content)

then
buffer content := buffer content ∪ {current msg �→ (src(current msg) �→ Lin)}

end
Event received message =̂
extends received message

where
current msg �→ (des(current msg) �→ Lout) ∈ buffer content

then
buffer content := buffer content \ {current msg �→ (des(current msg) �→ Lout)}

end

Fig. 18. M2: Sent message and Received message Events

www.manaraa.com

Towards Model-Based Testing

of Electronic Funds Transfer Systems

Hamid Reza Asaadi1,2, Ramtin Khosravi1,2,
MohammadReza Mousavi3, and Neda Noroozi2,3

1 School of ECE, University of Tehran, Tehran, Iran
2 Software Quality Lab., Fanap Co., Tehran, Iran

3 Department of CS, TU/Eindhoven, Eindhoven, The Netherlands

Abstract. We report on our first experience with applying model-based
testing techniques to an operational Electronic Funds Transfer (EFT)
switch. The goal is to test the conformance of the EFT switch to the
standard flows described by the ISO 8583 standard. To this end, we first
make a formalization of the transaction flows specified in the ISO 8583
standard in terms of a Labeled Transition System (LTS). This formaliza-
tion paves the way for model-based testing based on the formal notion
of Input-Output Conformance (IOCO) testing. We adopt and augment
IOCO testing for our particular application domain. We develop a proto-
type implementation and apply our proposed techniques in practice. We
discuss the encouraging obtained results and the observed shortcomings
of the present approach. We outline a roadmap to remedy the shortcom-
ings and enhance the test results.

1 Introduction

Electronic Funds Transfer (EFT) systems provide the infrastructure for online
financial transactions such as money transfer between bank accounts, electronic
payments, balance enquiries, and bill payments. A central part of an EFT sys-
tem is the EFT Switch (also known as Payment Switch, or simply Switch), which
provides a communication mechanism among different components of an EFT
system such as Automated Teller Machine (ATM) and Point-of-Sale (POS) ter-
minals, e-Payment applications, and core banking systems.

The EFT system components communicate in the form of transactions con-
sisting of several messages passed through the switch. For example, during a
simple purchase transaction originated by a POS terminal, the switch forwards
the purchase request to the core banking system (to charge the card holder’s ac-
count) and forwards the response back to the POS terminal. In the real setting
however, possible failures in the components and asynchrony in the communica-
tion media may give rise to more complicated transaction flows. For example, if a
POS terminal sends a purchase request and it does not receive the response from
the switch in time, it will time-out and send a reversal message to the switch,
requesting to cancel the previous transaction. It is also possible that when the

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 253–267, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

254 H.R. Asaadi et al.

time-out occurs, the purchase response is on the way back to the POS termi-
nal. In this case, the POS terminal receives a purchase response after it sends a
reversal request (which of course must be responded too, by the switch). This
way, each transaction may comprise a complex combination of different possible
interaction scenarios among the components of the EFT system.

In the presence of such complicated transaction flows, a thorough testing of
EFT switches is essential, as presence of errors may lead to inconsistencies among
different accounts (particularly among accounts at different banks). This calls for
a reconciliation process, possibly requiring manual checks which are very costly
for the banks.

The correct behavior of a typical EFT system is specified in the ISO 8583
standard [2] at a high level of abstraction. Since the nature of the system is
concurrent and distributed, generating test cases manually with a high coverage
is practically impossible, as the number of (combinations of) transaction flows
is very large. To solve this, we use model-based testing [5,12] as a systematic
method to automatically generate test cases from the specification.

Our testing method is mainly based on a formalization of the ISO 8583 stan-
dard in terms of Labeled Transition Systems (LTSs). Our formal specification
captures the behavior of an ISO-compliant EFT switch as well as its environ-
ment, i.e., the terminals and the core banking system. We have also performed
model-checking on our formal model to make sure that our formalization of the
ISO 8583 standard meets the intuitive requirements set forth by the standard
as well as by the switch designers. This formalization paves the way to exploit
a formal conformance testing method called IOCO (for Input Output Confor-
mance) testing [18,19] to automatically generate test-cases and perform online
conformance testing. We combine IOCO testing with functional testing tech-
niques, à la category-partition method, to capture the data-related aspects of
switch functionality. Moreover, we interface the test-case generator, with our own
test-case analysis and execution tool to evaluate, store, and prioritize test cases;
the test-cases are executed and their outcomes are also stored by the same tool.
Our test selection technique combines the black-box nature of IOCO (focusing
on model-coverage criteria) with white-box coverage metrics in order to choose
an effective test-suite. We developed a prototype tool implementing the above
mentioned functionality. Using our tool, we can generate a prioritized test-suite
for off-line and regression testing, without any need to explore the formal model
any more. Furthermore, during the execution of test cases, our tool also validates
various business rules which could not be captured in the formal model.

We applied our prototype implementation to an operational switch, developed
by Fanap Co., interacting with POS terminals and a core banking system as its
environment. We have covered a number of major transaction types and related
business rules and have detected some defects in the switch, which are reported
in the remainder of this paper. The defects have been reported to development
team and have been fixed subsequently. The initial results obtained from our
prototype, presented in this paper, were very encouraging. Hence, Fanap decided

www.manaraa.com

Towards Model-Based Testing of Electronic Funds Transfer Systems 255

to embark on the development of a proprietary test-case generation tool which
automatically combines the behavioral and functional models outlined in this
paper.

The rest of this paper is organized as follows. Section 2 provides a background
on the switch specification as described in the ISO 8583 standard. Section 3
covers our testing approach in addition to a quick overview of the IOCO theory.
The way we model the system in terms of Input Output Transition Systems
is described in Section 4. Various aspects of our testing method including test
case execution, and generation and prioritization of off-line test suites, as well
as checking business rules are presented in Section 5. The test results and code
coverage are given in Section 6. Discussion of the merits and demerits of the
current approach are discussed in Section 7. Section 8 presents a brief overview
of related work. Finally, we conclude the paper and present some directions for
future work in Section 9.

2 EFT Switch Functionality

Typical functionality of an EFT Switch include performing a purchase, balance
enquiry, withdrawal, bill payment, refund, and money transfer. All these func-
tions are composed of a few transaction flows introduced below. Apart from
financial functions, there are also features for switch administration, monitoring
and auditing that are out of the scope of this study.

As the components of an EFT system are usually provided by different ven-
dors, the ISO 8583 standard [2] is defined to determine the type and format of
the messages exchanged among the components of an EFT system. The stan-
dard also defines message and transaction flows at a high level of abstraction.
For example, Fig. 1 shows the flow of a financial transaction as depicted in the
standard [2]. According to the described flow, the acquirer sends a request to the
card issuer, followed by zero or more request repeat messages, until it receives a
response from the issuer. The data format of the messages (e.g., 1200 - financial
request) has been defined elsewhere in the standard [2, Chapter 4]. Note that
each typical functionality of an EFT switch, e.g., a purchase or a balance en-
quiry, is composed of a number of transaction flows, such as the one depicted
in Fig. 1. There are eleven more transaction flows specified in the standard. We
refer to [2, Chapter 5] for a detailed presentation of all transaction flows.

3 Testing Approach

3.1 IOCO Testing

IOCO testing [18,19] is a formal approach to model-based black-box testing of
functional requirements. The approach relies on a formal model of system behav-
ior, a specification typically called s, which captures the observable input and
output interactions of the system with its environment in terms of a Labeled
Transition System (LTS). Based on the specification, IOCO testing generates

www.manaraa.com

256 H.R. Asaadi et al.

Time1200 or 1220

1201 or 1221

1210 or 1230

acquirer issuer

1200/1201 financial request/financial request repeat
1210 financial request response

1220/1221 financial advice/financial advice repeat
1230 financial advice response

Fig. 1. Message flow for financial transactions [2]

rcv pos req?

snd core req!

rcv core req!

snd pos resp!

time out?

rcv pos req?

snd core req!

rcv core req!

snd pos resp!

time out?

(a) (b)

rcv pos req! snd core req? time out!

snd pos resp?
rcv core req?

snd core req?

snd pos resp?

rcv core req?

pass

fail

fail

fail fail

(c)

Fig. 2. IOCO testing of (b) an implementation against (a) a specification results in (c)
a tree presenting test cases based on transaction flows

www.manaraa.com

Towards Model-Based Testing of Electronic Funds Transfer Systems 257

test-cases in order to establish whether the implementation under test, typically
denoted by i, conforms to its specification, written as i conf s. The basic concepts
of IOCO testing is illustrated next using the specification LTS depicted in Fig. 2.
In an LTS specification of (an extremely simplistic view of) a transaction’s life-
cycle in an ideal switch is given. The IOCO testing is aimed at checking whether
a particular implementation, e.g., the one depicted in Fig. 2.(b), conforms to its
specification depicted in Fig. 2.(a). (Note that the LTS of the implementation is
not available to the tester, and the LTS is only used here to illustrate possible
patterns of interaction with the system.) To this end, the IOCO testing tech-
nique uses the specification LTS and generates test-cases, e.g., those depicted
in Fig. 2.(c), to test whether the (black-box) implementation conforms to the
specification. In this figure, input and output actions are affixed with a question
and an exclamation mark, respectively. In Fig. 2.(a), each path of the depicted
tree presents a pattern of interaction (i.e., providing input- and observing output
messages) eventually leading to a pass or a fail verdict. In particular, executing
the test-case corresponding to the path rcv pos req! . snd core req? . time out!
. snd pos resp? reveals a bug in the implementation. (Note that inputs in the
model become outputs of the test-case and outputs of the model become inputs
of the test-case.)

3.2 The Testing Infrastructure

An overview of our test infrastructure is given in Fig. 3. We have made an LTS
model of the EFT switch system with a POS terminal and a simplified core
banking system as its environment. Details of this explanation are described in
Section 4.

LTS Model

IOCO Test-Case
Generator

Offline
Test-Suite

Adaptor

Business
Rules

SUT

Coverage
Metrics

(Cobertura)

Sample
Data

• TRON-Switch Interface
• Test Case Selection
• Business Rule Application(UPPAAL TRON)

Fig. 3. An overview of the test infrastructure

For this experiment, we used the timed-automata language of Uppaal [4] as
our modeling language and Uppaal Tron [11] as our test-case generation tool.
(Uppaal Tron implements a variant of IOCO, called RTIOCO; see [17] for a
formal comparison of the notions). For the commercial use, we plan to implement

www.manaraa.com

258 H.R. Asaadi et al.

the test-case generation algorithm in our in-house tool and integrate it with
our test infrastructure described below. We have also developed an adaptor to
translate and augment abstract interactions of the model to concrete network
messages sent to the switch, on one side, and strip down network messages from
EFT to model interactions, on the other side.

We have developed tools for storing test-cases and their outcomes, prioritiz-
ing them and executing off-line test-suites and have placed it around the test
infrastructure. For the test prioritization and selection, we have implemented our
heuristics and combined them with the code coverage metrics from Cobertura [1].
This allows us to re-use the information resulting from an online test campaign
in future tests and also use the generated test-suite for regression testing.

4 Modeling the EFT Switch

Our LTS formalization of the ISO 8583 standard is specified in terms of the
input language of Uppaal in order to benefit from several modeling, simulation,
verification and test-case generation tools available in its tool-set. A model in
Uppaal is in the form of a network of timed automata. A timed automaton
is a finite-state machine (FSM), i.e., a set of locations which are connected via
edges, extended with (constraints on and assignments to) clock variables [4]. An
edge in an Uppaal timed-automata can be annotated by four types of labels:
selections, guards, synchronizations and updates.

When taking a transition specified by an edge, an automaton may send or
receive a signal in the synchronization part. Synchronization in Uppaal can be
either a handshaking or a broadcast synchronization. Common to our previous
examples, a send signal in Uppaal is annotated by an exclamation mark and
its receive counterpart is annotated by a question mark.

The behavior of an EFT switch and its environment is specified in terms of
a number of transaction flows. Combining all of these flows into a single model
(a timed-automaton) would compromise readability and maintainability; it is
also very difficult, if not impossible, to check whether the specified automaton
is a correct formalization of the flow specified by the ISO standard. Hence, we
break the specification into several timed automata, each modeling the behavior
of EFT system components in a specific transaction flow (see Fig. 4).

It is possible to have multiple instances of the same transaction flow executing
concurrently. So, we need to have multiple instances of the corresponding FSMs
in our model. This is possible in Uppaal, since we can declare multiple instances
of the same FSM “template”. In fact, the number of declared instances of an FSM
determines the maximum number of concurrent instances of the corresponding
transaction type. To generate various combination of transaction flows, we use a
coordinator automaton. The coordinator non-deterministically selects the next
flow to start and sends it the start signal and repeats this continuously as long
as a parallel instance is ready to receive the start signal. For example, when the
switch is ready to accept another Reversal request, it sends a rev ready signal
to the coordinator. Then, the coordinator sends a rev start to the POS FSM to
start the Reversal (Fig. 4).

www.manaraa.com

Towards Model-Based Testing of Electronic Funds Transfer Systems 259

s6 s5

s2

s4

receiveID != curTrx

receiveID == curTrx

s3

curTrx = j

s1

j: int[MIN_P, MAX_P]

rev_core_rs[recevieID]?

rev_core_rq[curTrx]!

rev_ready!

rev_req[j]?

rev_pos_rs[curTrx]!

rev_done[curTrx]!

p1

curTrx = i

p3p4

i: int[MIN_P, MAX_P]

receiveID = i

receiveID == curTrx

receiveID != curTrx

i: int[MIN_P, MAX_P]

rev_pos_rs[i]?

rev_req[i]!

rev_start? p2

(a) (b)

Fig. 4. Simplified models of the behavior of Switch (a) and POS (b) in Reversal
transaction flow

During development of the model, human mistakes may introduce errors in
the model. To discover such errors, we take a model-checking approach to verify
the model against correctness properties before the testing process. We first for-
malized a few intuitive correctness based on the ISO standard and the intuition
of the designer in the temporal-logic-based verification language provided by
Uppaal Tron (for some properties, we had to augment the model with observer
automata in order to compensate for the limited expressiveness of the logic). For
example, the following formula is used to verify that every transaction started
must eventually be finished.

A[] forall (i : int[0, MAX_TX])
TransFlow[i].start->TransFlow[i].finish

Subsequently, we use Uppaal verifier to model check the formalized correctness
properties.

Due to the combinatorial explosion of the state space, the performance of
the Uppaal Tron test-case generator was extremely low, when it tried to gen-
erate test-cases for the whole EFT system. To alleviate the state-space explo-
sion problem, we implemented the abstract model of the core-banking system
as a separate Java program and ran it in parallel with Uppaal Tron and its
adaptor. With this simple improvement, we were able to increase the perfor-
mance of the test-case generation by a factor of 10. This way, we could gener-
ate test-cases for hundreds of concurrent transaction flows for each instance of
Uppaal Tron.

www.manaraa.com

260 H.R. Asaadi et al.

5 Testing the EFT Switch

5.1 Interfacing Switch and TRON

Uppaal Tron continuously interacts with the system under test while exploring
the LTS model. In other words, on-the-fly test-case generation is combined with
online testing, so that the next step in the test-case generation can be determined
by the response from the system under test [14]. Hence, to interface Uppaal
Tron with the system under test, an adaptor has to be implemented, which
in its simplest form, communicates the messages between Uppaal Tron and
the system under test (possibly after converting them to the right format for
each side). We implemented such an adaptor which translates the rather plain
signals of Uppaal Tron to (from) the elaborate format of financial messages
specified by the ISO 8583 standard. In order to perform the translation to the
ISO 8583 messages several details (concerning financial data of a transaction)
have to be added to the message, which are selected from representative data
stored in our sample database (more explanation about this to follow). Besides
the format conversion and the addition/removal of financial data, we developed
several other components in the adaptor which store and prioritize the test-
cases in order to re-use them in regression testing. This way, a prioritized test
suite is obtained, which can be run efficiently, without the overhead of exploring
the formal model. Finally, there are some types of business rules that are hard
to capture in Uppaal Tron models and hence, are applied and verified by a
separate component in the adaptor. The functionality of our extended adaptor
is explained in [3] in more details.

5.2 Classifying and Covering Data Domains

Common to many reactive systems in the financial domain, the EFT switch
exhibits complex reactive behavior while also having a data-dependent nature.
An effective test method must address and integrate both of these facets.

So, we must set the fields of the messages generated by Tron to different
combination of values. This results in multiple sequences of messages made from
the single sequence of messages generated by Tron.

To manage the complexity of the data domain, we have used the classification
tree method [10] (as an extension of the original category-partition method) to
organize the test-case generation process. According to the method, we should
select an aspect relevant to the test and partition the input domain into dis-
joint subsets called classes. The resulting classes will be subsequently classified
according to some other aspect recursively, resulting in a tree of classifications
and classes. This way, we specify representative elements for the content of data
elements present in the structure of financial messages.

We divide the ongoing pattern of interaction into discrete pieces. We define
each of these pieces (with some re-use of terminology) as a test-case. Hence,
a test-case is a combination of transaction flows (possibly of different types)
with specified values for the data items in the messages passed. For example,

www.manaraa.com

Towards Model-Based Testing of Electronic Funds Transfer Systems 261

a test case may comprise a purchase transaction succeeded by a reversal. To
specify discrete test-cases, in addition to the content of the financial messages, we
should also specify the type and the number of transaction flows to be executed
successively in the test-case.

In our prototype implementation, we used the domain and the implementation
knowledge of the EFT switch to classify the following set of data domains:

– Transaction flow types,
– PIN validity,
– Purchase amount, and
– Transaction count.

For each aspect, we select a suitable set of discriminating values by using the
domain knowledge. For Transaction type we consider five different classes: Pur-
chase only (P), Balance Inquiry only (B), Purchase and Balance Inquiry (PB),
Purchase with Reversal (PR), and Purchase with Reversal and Balance Inquiry
(PRB). The PIN validity classification shows whether the transaction is autho-
rized to be executed according to the PIN number input parameter. The domain
of Purchase amount is the set of positive integers. The negative and zero cases
are also included to test invalid cases. Finally, the Transaction count parameter
is the number of transaction to be executed in the test case. A part of the result-
ing classification tree is shown in Fig. 5. Note that the classification tree is not
supposed to be a balanced tree and hence, some parameters may not apply to
all cases. For example, a Balance Inquiry transaction does not have a purchase
amount as an input parameter.

Transactin Type

P

Pin Validity

V/PIN

Amount

= 0

Trx Count

5 15 40

< 0

Trx Count

. . .

> 0

Trx Count

. . .

I/PIN

Amount

. . .

B

. . .

. . .

Fig. 5. A part of test-case classification tree

The transaction type parameter is applied to the coordinator machine (see
Sec. 4) which affects the sequence of transactions generated by Tron. The other
parameter values are set by the adaptor. The data selection tree is currently
hard-coded in the adaptor, but we plan to make this generic and include it in
the test specification model (see Section 7).

www.manaraa.com

262 H.R. Asaadi et al.

Table 1. Statement coverage results in percent

Trx No.
5 15 40

B 0.614 0.622 0.620
B(Invalid PIN) 0.487 0.487 0.487
P 0.589 0.589 0.594
P(Invalid PIN) 0.487 0.487 0.487
PB 0.596 0.596 0.592
PB(Invalid PIN) 0.487 0.487 0.487
PR 0.630 0.671 0.671
PRB(Invalid PIN) 0.529 0.529 0.529
PRB 0.712 0.710 0.712
PRB(Invalid PIN) 0.529 0.529 0.529

6 Test Results

Apart from online testing, which has been very helpful in revealing defects in the
product, defining suitable test-cases enabled us to measure test coverage for each
test-case and prioritize the test-cases according to our test plan (in this case: full
statement coverage of functional components, i.e., components involved in the
realization of functionality in the main transaction flows). This prioritized set
is used for off-line and regression testing, particularly when running the whole
test-infrastructure is not feasible and the testers have to choose some of test-
cases to get the most coverage. In this work, our test plan is to cover different
flows as much as we can, instead of trying to cover all features of the switch.

We have selected the test cases based on our category-partitioning analysis.
Due to some obstacles in the implementation, in this work we have just used
positive values for the Amount parameter. Though, other parameters are tested
as described in the resulted classification tree (Fig. 5). We have measured the
statement coverage using Cobertura [1]. To reduce measurement errors, each test
case has been repeated four times (with the same configuration) and the average
coverage is reported in percents in Table 1.

Early analysis showed that there is a considerable amount of common code
between the purchase and balance enquiry implementation because of inherent
common logic. This hypothesis can also be proven by measuring the relative
coverage of adding a test-case of former type to a test-case of the latter type
(or vice versa); namely, the addition of each type of test-case to the other does
not significantly increase the statement coverage measure. Hence, combining
these two tests (i.e., the PB row in Table 1) did not result in any considerable
improvement in coverage.

Further analysis shows that a significant amount of code for processing a
transaction is devoted to common tasks such as authorization and packet routing.
This justifies why there is not much difference between the coverage results of
the cases.

www.manaraa.com

Towards Model-Based Testing of Electronic Funds Transfer Systems 263

Note that the increase in the size of transactions beyond 15 messages did not
increase the coverage considerably, since apparently this does not lead to any
new behavior in the EFT switch and the same logic is executed repeatedly. How-
ever, in our experience, having a large number of parallel transaction instances
does increase the chance of catching errors caused by concurrency issues or
(thread-pool) overflow problems.

Another point is that test-cases with exceptions have lower coverage among
other combinations, yet they are deemed very important by domain experts.
This is true because the switch drops unauthorized messages in early stages,
so a big part of the code will never run. This is justified by developers’ insight
that the code for handling exceptional cases has little overlap with the code for
the normal transaction flows. Hence, despite their individual low coverage, these
test-cases should be appeared with high priority in the final priority list.

7 Discussion

Our system under test is inherently a mixture of reactive and functional behav-
ior: it implements a high-level protocol for exchanging messages for a financial
transaction, while its detailed implementation is very much dependent on the
functional and data-related aspects. This mixture, if not structured properly,
makes the generated models overly cluttered and complicated and unfortunately,
most of the existing IOCO-based tools, including Uppaal Tron and TorX [20]
do not provide proper facilities for orthogonalizing, structuring and relating re-
active and functional behavior. Hence, we plan to make a high-level specification
language (inspired by prior effort in UML Testing Profile [15], TTCN3 [23]) as a
front-end for our proprietary IOCO-based engine in order to solve the following
issues:

1. Specification of abstract data types and their partitions: a specification lan-
guage is needed to specify the data types used in the functional domain,
different partitioning and the representative elements of partitions.

2. Full support of data parameters in the behavioral model: the support for
data parameter in Uppaal Tron is limited; it is not possible to define
the representative data values of each data type attached to messages of the
behavioral model. Being able to attach different data types and their different
partitionings is an essential ingredient for improving our test results.

3. Support for asynchronous message passing: Thus far, we have experimented
with different additions to our model in order to cater for the asynchronous
nature of communication in our domain. We first tried adding input/output
queues as one option which immediately led to drastic performance draw-
backs. Then, we have experimented with abstracting from the asynchronous
delays in our protocols, which does lead to better performance. However,
such an abstraction results in fictitious sequences of messages that are not
expected by the SUT. To overcome this, we had to add several guards to
guarantee that the model will only be triggered with appropriate signals.

www.manaraa.com

264 H.R. Asaadi et al.

This last modification has led to a complicated specification. An inherent
support for asynchronous message passing may be considered as an option,
along the lines of the initial proposal in [22].

4. Specifying a more dynamic notion of test goal and model coverage: Uppaal
Tron does not allow for specifying a notion of test goal. Apart from tra-
ditional notions of test goal, e.g., hitting certain states in the model, we
need to specify test goals that refer to the coverage of the functional model.
For example, it is essential to cover all (combinations of) representative el-
ements of a certain partitioning of data types, a la the equivalence-class
testing method.

Despite the above-mentioned shortcomings, Uppaal Tron can still be con-
sidered for prototyping a test-bed for similar systems, however, our experience
shows that the following issues need to be considered:

1. Performance issues: Due to the very complex and mixed nature of the system,
we soon reached the boundaries of possibilities with Uppaal Tron. To
overcome this problem we had to distribute our test-case generation among
a number of parallel instances of Uppaal Tron. A challenge imposed by this
solution is how to pass the received messages to the right instance of Uppaal
Tron. This problem is intensified by the lack of appropriate support of data-
type-handling. To solve the latter problem, we annotated the messages in the
underlying model of each Uppaal Tron instance with a unique identifier
which can be recognized and distinguished by our adapter.

2. Data-related behavior: Uppaal natively supports data types and variables
in the definition of its machines. Despite its limited flexibility (e.g., in defin-
ing customized data types), the specification language can still be used to
implement basic data-dependent behaviors. The problem is, the Uppaal en-
gine generates a state-space which is suitable for model-checking purposes
(i.e., the whole state-space). Uppaal Tron uses this state-space to infer ap-
plicable test-cases, while a non-exhaustive state-space exploration algorithm
could be sufficient to generate test-cases. Some of the above-mentioned per-
formance issues, are also rooted in this problem. Additionally, not all Up-
paal data structures are also supported in Tron. For instance, passing data
arrays from the test engine to the SUT (or more precisely the adapter) or
vice versa is not possible. It turns out that the performance deteriorates
drastically when the specification makes use of Uppaal variables, in com-
parison to hardcoded values in signal names (i.e., completely unfolding the
model). Due to this, we decided to implement a specification generator, i.e.,
a script which creates multiple copies of the system behavior with all data
fields embedded in signal names. These complex signals must be decoded by
the adapter to get access to the actual values. A similar operation should
be done with the SUT outgoing signals (i.e., the adapter should encode the
data values appropriately in the signal name and pass it to the tester). Al-
though we succeeded to reach an acceptable performance using this method,
we soon reached the limit of defining automata in Uppaal.

www.manaraa.com

Towards Model-Based Testing of Electronic Funds Transfer Systems 265

We have so far experimented with few types of transactions. We plan to include
other types of transaction (such as special POS services) and other EFT devices
(e.g., Automatic Teller Machines – ATMs) in our future test infrastructure.

Our test-case prioritization policy is now based on absolute statement coverage
of test-cases. This can be extended in two ways: first, other coverage measure,
particularly coverage metrics on the model should be taken into account and
second, more complex and mature prioritization techniques can be exploited
(e.g., incremental analysis of test-case coverage and assigning weights to the
covered scenarios or components [7]).

Our approach to check the validity of performed transactions inside our test
service layer may extend in the future to incorporate checking more business
rules. However, in order to keep our adaptor still manageable we would like to
add another layer of abstraction for specifying models of such business rules and
an independent component which can perform the necessary checks based on
the rules.

8 Related Work

Gast [13] implements an FSM-based conformance testing algorithm close to
IOCO. The FSM model in Gast is specified in the functional programming lan-
guage Clean. One can define abstract data types and use the generic function
definition in Clean to use them in generating test-cases. In [21], Gast is used
to test Java Card applet implementing an electronic purse application. The ap-
plicability of their test-technique is then demonstrated by manually injecting
a number of bugs (creating mutations) and applying the automated test tech-
nique to find them. The work reported in [21] is essentially based on the same
principles as our work (modulo some technical, e.g., the differences in the def-
inition of conformance relation). We improve upon the trajectory proposed in
[21] by integrating domain knowledge and code coverage metric in prioritizing
test-cases.

The model-based testing environment of Microsoft called Spec Explorer to
design and run automatic tests [24]. Their modeling language combines scenario-
based modeling with state-based modeling [8,9]. This prevents complicated con-
version from the developed code (which are scenario-based) to an FSM model
(which is state-based) by test designers. This can make the learning curve for
model-based testing less steep. For our application domain, however, a more elab-
orate model of both behavior and data domain seems indefensible and hence,
we believe that it pays off to spend an extra effort to build a separate model for
testing purposes. The ISO 8583 standard as a reference model facilitates making
this model and keeps it relatively orthogonal to the changes in implementation.

Our prioritization method is based on the work of Elbaum et al. [7,6] in
which they have analyzed and compared different test-case prioritizing tech-
niques which helps test designers to select appropriate techniques according to
their needs. We used category-partitioning in order to organize our test-case

www.manaraa.com

266 H.R. Asaadi et al.

generation process. The technique was originally introduced by Ostrand and
Balcer [16]. In particular, this method is more effective when enormous variety
of test-cases can be generated but only some of them have real testing value.

9 Conclusions and Future Work

In this work, we developed a formal model of a high-risk financial system, called
an Electronic Fund Transfer (EFT) switch, in terms of Labeled Transition Sys-
tems (LTSs). The formal model is then exploited to apply model based testing
techniques in order to test such a system automatically and systematically. We
used an existing test-case generator, called Uppaal Tron, and extend it with
several components, to augment the test-cases with financial data and to store,
evaluate and prioritize the generated test-cases. Also, to enhance the perfor-
mance and to prevent state-space explosion in our testing infrastructure, we
implemented the formal model of some components in the environment as a
separate Java component running in parallel with our test infrastructure.

Hitherto, we have only covered few transaction types (e.g., purchase, reversal
and balance enquiry) and only used POS terminals to send messages to the
EFT switch. Despite this limited scope of our current implementation, the test
results both in terms of coverage and detected bugs are encouraging. However, we
need to overcome the limitations in the present approach in order to replace the
current manual testing techniques with the model-based approach presented in
this paper. Hence, we would like to extend the approach along the lines presented
in Section 7 and build an in-house tool to support it.

Acknowledgments. The authors would like to thank Marius Mikucionis for
his helpful hints on the Uppaal Tron engine. Tim Willemse provided useful
comments on an earlier draft of this paper. This work is partially sponsored by
Fanap IT corporation.

References

1. Cobertura project, http://cobertura.sourceforge.net/
2. ISO 8583 standard for financial transaction card originated messages - interchange

message specifications – part 1: Messages, data elements and code values (2003)
3. Asadi, H.R., Khosravi, R., Mousavi, M.R., Noroozi, N.: Towards Model-Based Test-

ing of Electronic Funds Transfer Systems. Technical Report CSR-10-04, Depart-
ment of Computer Science, Eindhoven University of Technology (May 2010)

4. Behrmann, G., David, A., Larsen, K., H̊akansson, J., Pettersson, P., Yi, W., Hen-
driks, M.: UPPAAL 4.0. In: Proc. of QEST 2006, pp. 125–126. IEEE CS (2006)

5. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-
Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)

6. Elbaum, S., Malishevsky, A., Rothermel, G.: Prioritizing test cases for regression
testing. In: Proceedings of the International Symposium on Software Testing and
Analysis, pp. 102–112. ACM Press (2000)

http://cobertura.sourceforge.net/

www.manaraa.com

Towards Model-Based Testing of Electronic Funds Transfer Systems 267

7. Elbaum, S., Rothermel, G., Kanduri, S., Malishevsky, A.: Selecting a cost-effective
test case prioritization technique. Software Quality Journal 12 (2004)

8. Grieskamp, W.: Multi-Paradigmatic Model-Based Testing. In: Havelund, K.,
Núñez, M., Roşu, G., Wolff, B. (eds.) FATES 2006 and RV 2006. LNCS, vol. 4262,
pp. 1–19. Springer, Heidelberg (2006)

9. Grieskamp, W., Tillmann, N., Veanes, M.: Instrumenting scenarios in a model-
driven development environment. Information & Software Technology 46(15),
1027–1036 (2004)

10. Grochtmann, M., Grimm, K.: Classification trees for partition testing. Softw. Test.,
Verif. Reliab. 3(2), 63–82 (1993)

11. Hessel, A., Larsen, K., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.: Testing
Real-Time Systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman, M.
(eds.) FORTEST. LNCS, vol. 4949, pp. 77–117. Springer, Heidelberg (2008)

12. Hierons, R., Bogdanov, K., Bowen, J., Cleaveland, R., Derrick, J., Dick, J., Ghe-
orghe, M., Harman, M., Kapoor, K., Krause, P., Lüttgen, G., Simons, A.J.H.,
Vilkomir, S.A., Woodward, M., Zedan, H.: Using formal specifications to support
testing. ACM Computing Surveys 41(2) (2009)

13. Koopman, P., Plasmeijer, R.: Testing reactive systems with GAST. In: Post-
Proceedings of TFP 2003, pp. 111–129, Intellect (2004)

14. Mikucionis, M., Nielsen, B., Larsen, K.: Real-time system testing on-the-fly. In:
Proceedings of NWPT 2003, pp. 36–38 (2003)

15. Object Management Group, UML Testing Profile Version 1.0 (2005)
16. Ostrand, T., Balcer, M.: The category-partition method for specifying and gener-

ating functional tests. Commun. ACM 31(6), 676–686 (1988)
17. Schmaltz, J., Tretmans, J.: On Conformance Testing for Timed Systems. In:

Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 250–264.
Springer, Heidelberg (2008)

18. Tretmans, J.: A formal approach to conformance testing. In: Proceedings of the
IFIP International Workshop on Protocol Test systems VI, pp. 257–276. North-
Holland (1994)

19. Tretmans, J.: Model Based Testing with Labelled Transition Systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1–38.
Springer, Heidelberg (2008)

20. Tretmans, J., Brinksma, E.: TorX: Automated Model-Based Testing. In: Proceed-
ings of the European Conference on Model-Driven Software Engineering (2003)

21. van Weelden, A., Oostdijk, M., Frantzen, L., Koopman, P., Tretmans, J.: On-the-
fly formal testing of a smart card applet. In: Security and Privacy in the Age of
Ubiquitous Computing. IFIP, vol. 181, pp. 565–576. Springer, Heidelberg (2005)

22. Weiglhofer, M., Wotawa, F.: Asynchronous Input-Output Conformance Testing.
In: Proceedings of COMPSAC 2009, vol. 1, pp. 154–159. IEEE CS (2009)

23. Willcock, C., Deiß, T., Tobies, S., Keil, S., Engler, F., Schulz, S.: An Introduction
to TTCN-3. Wiley (2005)

24. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson,
L.: Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer.
In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949,
pp. 39–76. Springer, Heidelberg (2008)

www.manaraa.com

Relating Modal Refinements,

Covariant-Contravariant Simulations
and Partial Bisimulations�

Luca Aceto1, Ignacio Fábregas2, David de Frutos Escrig2,
Anna Ingólfsdóttir1, and Miguel Palomino2

1 ICE-TCS, School of Computer Science, Reykjavik University, Iceland
2 Departamento de Sistemas Informáticos y Computación,

Universidad Complutense de Madrid, Spain

Abstract. This paper studies the relationships between three notions
of behavioural preorder that have been proposed in the literature: re-
finement over modal transition systems, and the covariant-contravariant
simulation and the partial bisimulation preorders over labelled transition
systems. It is shown that there are mutual translations between modal
transition systems and labelled transition systems that preserve, and
reflect, refinement and the covariant-contravariant simulation preorder.
The translations are also shown to preserve the modal properties that
can be expressed in the logics that characterize those preorders. A trans-
lation from labelled transition systems modulo the partial bisimulation
preorder into the same model modulo the covariant-contravariant simula-
tion preorder is also offered, together with some evidence that the former
model is less expressive than the latter. In order to gain more insight into
the relationships between modal transition systems modulo refinement
and labelled transition systems modulo the covariant-contravariant sim-
ulation preorder, their connections are also phrased and studied in the
context of institutions.

1 Introduction

Modal transition systems (MTSs) have been proposed in, e.g., [11,12] as a model
of reactive computation based on states and transitions that naturally supports
a notion of refinement that is akin to the notion of implication in logical speci-
fication languages. (See the paper [3] for a thorough analysis of the connections
between specifications given in terms of MTSs and logical specifications in the
setting of a modal logic that characterizes refinement.) In an MTS, transitions
come in two flavours: the may transitions and the must transitions, with the

� Research supported by Spanish projects DESAFIOS10 TIN2009-14599-C03-01,
TESIS TIN2009-14321-C02-01 and PROMETIDOS S2009/TIC-1465, the project
‘Processes and Modal Logics’ (project nr. 100048021) of the Icelandic Fund for Re-
search, and the Abel Extraordinary Chair programme within the NILS Mobility
Project.

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 268–283, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

Relating Modal Refinements, Covariant-Contravariant Simulations 269

requirement that each must transition is also a may transition. The idea behind
the notion of refinement over MTSs is that, in order to implement correctly
a specification, an implementation should exhibit all the transitions that are
required by the specification (these are the must transitions in the MTS that
describes the specification) and may provide the transitions that are allowed by
the specification (these are the may transitions in the MTS that describes the
specification).

The formalism of modal transition systems is intuitive, has several variants
with varying degrees of expressive power and complexity—see, e.g., the survey
paper [1]—and has recently been used as a suitable model for the specification
of service-oriented applications. In particular, results on the supervisory control
(in the sense of Ramadge and Wonham [15]) of systems whose specification is
given in that formalism have been presented in, e.g., [4,8].

The very recent development of the notion of partial bisimulation in the set-
ting of labelled transition systems (LTSs) presented in [2] has been explicitly
motivated by the desire to develop a process-algebraic model within which one
can study topics in the field of supervisory control. A partial bisimulation is
a variation on the classic notion of bisimulation [13,14] in which two LTSs are
only required to fulfil the bisimulation conditions on a subset B of the collec-
tion of actions; transitions labelled by actions not in B are treated as in the
standard simulation preorder. Intuitively, one may think of the actions in B as
corresponding to the uncontrollable events—see [2, page 4]. The aforementioned
paper offers a thorough development of the basic theory of partial bisimulation.

Another recent proposal for a simulation-based behavioural relation over LTSs,
called the covariant-contravariant simulation preorder, has been put forward
in [5], and its theory has been investigated further in [6]. This notion of simula-
tion between LTSs is based on considering a partition of their set of actions into
three sets: the collection of covariant actions, that of contravariant actions and
the set of bivariant actions. Intuitively, one may think of the covariant actions
as being under the control of the specification LTS, and transitions with such
actions as their label should be simulated by any correct implementation of the
specification. On the other hand, the contravariant actions may be considered as
being under the control of the implementation (or of the environment) and tran-
sitions with such actions as their label should be simulated by the specification.
The bivariant actions are treated as in the classic notion of bisimulation.

It is natural to wonder whether there are any relations among these three
formalisms. In particular, one may ask oneself whether it is possible to offer
mutual translations between specifications given in those state-transition-based
models that preserve, and reflect, the appropriate notions of behavioural preorder
as well as properties expressed in the modal logics that accompany them—see,
e.g., [2,3,6]. The aim of this study is to offer an answer to this question.

In this paper, we study the relationships between refinement over modal tran-
sition systems, and the covariant-contravariant simulation and the partial bisim-
ulation preorders over labelled transition systems. We offer mutual translations
between modal transition systems and labelled transition systems that preserve,

www.manaraa.com

270 L. Aceto et al.

and reflect, refinement and the covariant-contravariant simulation preorder, as
well as the modal properties that can be expressed in the logics that charac-
terize those preorders. We also give a translation from labelled transition sys-
tems modulo the partial bisimulation preorder into the same model modulo the
covariant-contravariant simulation preorder, together with some evidence that
the former model is less expressive than the latter. Finally, in order to gain
more insight into the relationships between modal transition systems modulo
refinement and labelled transition systems modulo the covariant-contravariant
simulation preorder, we phrase and study their connections in the context of
institutions [9].

The developments in this paper indicate that the formalism of MTSs may
be seen as a common ground within which one can embed LTSs modulo the
covariant-contravariant simulation preorder or partial bisimilarity. Moreover,
there are some interesting, and non-obvious, corollaries that one may infer from
the translations we provide. See Section 5, where we use our translations to show,
e.g., that checking whether two states in an LTS are related by the covariant-
contravariant simulation preorder can always be reduced to an equivalent check
in a setting without bivariant actions, and provide a more detailed analysis of the
translations. The study of the relative expressive power of different formalisms is,
however, an art as well as a science, and may yield different answers depending on
the conceptual framework that one adopts for the comparison. For instance, at
the level of institutions [9], we provide an institution morphism from the institu-
tion corresponding to the theory of MTSs modulo refinement into the institution
corresponding to the theory of LTSs modulo the covariant-contravariant simula-
tion preorder. However, we conjecture that there is no institution morphism in
the other direction. The work presented in the study opens several interesting
avenues for future research, and settling the above conjecture is one of a wealth
of research questions we survey in Section 8.

The remainder of the paper is organized as follows. Section 2 is devoted to
preliminaries. In particular, in that section, we provide all the necessary back-
ground on modal and labelled transition systems, modal refinement and the
covariant-contravariant simulation preorder, and the modal logics that charac-
terize those preorders. In Section 3, we show how one can translate LTSs modulo
the covariant-contravariant simulation preorder into MTSs modulo refinement.
Section 4 presents the converse translation. We discuss the mutual translations
between LTSs and MTSs in Section 5. Section 6 offers a translation from LTSs
modulo partial bisimilarity into LTSs modulo the covariant-contravariant sim-
ulation preorder. In Section 7, we study the relationships between modal tran-
sition systems modulo refinement and labelled transition systems modulo the
covariant-contravariant simulation preorder in the context of institutions. Sec-
tion 8 concludes the paper and offers a number of directions for future research
that we plan to pursue.

The proofs of all the results in the paper and further developments
may be found in the full version of this study, which is available at
http://www.ru.is/faculty/luca/PAPERS/mts-cc.pdf.

http://www.ru.is/faculty/luca/PAPERS/mts-cc.pdf

www.manaraa.com

Relating Modal Refinements, Covariant-Contravariant Simulations 271

2 Preliminaries

We begin by introducing modal transition systems, with their associated notion
of (modal) refinement, and labelled transition systems modulo the covariant-
contravariant simulation preorder. We refer the reader to, e.g., [3,11,12] and [5,6]
for more information, motivation and examples.

Modal Transition Systems and Refinement.

Definition 1. For a set of actions A, a modal transition system (MTS) is a
triple (P,→�,→�), where P is a set of states and →�,→� ⊆ P ×A× P are
transition relations such that →� ⊆ →�.

An MTS is image finite iff the set {p′ | p a→� p′} is finite for each p ∈ P and
a ∈ A.

The transitions in →� are called the must transitions and those in →� are the
may transitions. In an MTS, each must transition is also a may transition, which
intuitively means that any required transition is also allowed.

In what follows, we often identify an MTS, or a transition system of any of
the types that we consider in this paper, with its set of states. In case we wish
to make clear the ‘ambient’ transition system in which a state p lives, we write
(P, p) to indicate that p is to be viewed as a state in P .

The notion of (modal) refinement � over MTSs that we now proceed to intro-
duce is based on the idea that if p � q then q is a ‘refinement’ of the specification
p. In that case, intuitively, q may be obtained from p by possibly turning some
of its may transitions into must transitions.

Definition 2. A relation R ⊆ P ×Q is a refinement relation between two modal
transition systems if, whenever p R q:

– p
a→� p′ implies that there exists some q′ such that q

a→� q′ and p′ R q′;
– q

a→� q′ implies that there exists some p′ such that p
a→� p′ and p′ R q′.

We write � for the largest refinement relation.

Example 1. Consider the MTS U over the set of actions A with u as its only
state, and transitions u

a→� u for each a ∈ A. It is well known, and not hard to
see, that u � p holds for each state p in any MTS over action set A. The state
u is often referred to as the loosest (or universal) specification.

Definition 3. Given a set of actions A, the collection of Boudol-Larsen’s modal
formulae [3] is given by the following grammar:

ϕ ::= ⊥ | � | ϕ ∧ ϕ | ϕ ∨ ϕ | [a]ϕ | 〈a〉ϕ (a ∈ A).

The semantics of these formulae with respect to an MTS P and a state p ∈ P
is defined by means of the satisfaction relation |=, which is the least relation
satisfying the following clauses:

(P, p) |= �.

www.manaraa.com

272 L. Aceto et al.

(P, p) |= ϕ1 ∧ ϕ2 if (P, p) |= ϕ1 and (P, p) |= ϕ2.
(P, p) |= ϕ1 ∨ ϕ2 if (P, p) |= ϕ1 or (P, p) |= ϕ2.
(P, p) |= [a]ϕ if (P, p′) |= ϕ for all p

a→� p′.
(P, p) |= 〈a〉ϕ if (P, p′) |= ϕ for some p

a→� p′.

For example, the state U from Example 1 satisfies neither the formula 〈a〉� nor
the formula [a]⊥. Indeed, it is not hard to see that U satisfies a formula ϕ if,
and only if, ϕ is a tautology.

The following result stems from [3].

Proposition 1. Let p, q be states in image-finite MTSs over the set of actions
A. Then p � q iff the collection of Boudol-Larsen’s modal formulae satisfied by
p is included in the collection of formulae satisfied by q.

Labelled Transition Systems and Covariant-contravariant Simulation. A labelled
transition system (LTS) is just an MTS with→�=→�. In what follows, we write
→ for the transition relation in an LTS.

Definition 4. Let P and Q be two LTSs over the set of actions A, and let
{Ar, Al, Abi} be a partition of A1. An (Ar, Al)-simulation (or just a covariant-
contravariant simulation when the partition of the set of actions A is understood
from the context) between P and Q is a relation R ⊆ P ×Q such that, whenever
p R q, we have:

– For all a ∈ Ar ∪Abi and all p
a→ p′, there exists some q

a→ q′ with p′ R q′.
– For all a ∈ Al ∪Abi and all q

a→ q′, there exists some p
a→ p′ with p′ R q′.

We will write p �cc q if there exists a covariant-contravariant simulation R such
that p R q.

The actions in the set Ar are sometimes called covariant, those in Al are con-
travariant and the ones in Abi are bivariant. When working with covariant-
contravariant simulations, we shall sometimes refer to the triple (Ar , Al, Abi) as
the signature of the corresponding LTS.

Example 2. Assume that a ∈ Ar and b ∈ Al. Consider the LTSs described by
the CCS [13] terms p = a + b, q = a and r = b. Then r �cc p �cc q, but none of
the converse relations holds.

Definition 5. Covariant-contravariant modal logic has almost the same syntax
as the one for modal refinement:

ϕ ::= ⊥ | � | ϕ ∧ ϕ | ϕ ∨ ϕ | [b]ϕ | 〈a〉ϕ (a ∈ Ar ∪Abi , b ∈ Al ∪Abi).

The semantics differs for the modal operators, since we interpret formulae over
ordinary LTSs:

(P, p) |= [b]ϕ if (P, p′) |= ϕ for all p
b→ p′.

1 Note that any of the sets Ar, Al and Abi may be empty.

www.manaraa.com

Relating Modal Refinements, Covariant-Contravariant Simulations 273

(P, p) |= 〈a〉ϕ if (P, p′) |= ϕ for some p
a→ p′.

For example, both p and q from Example 2 satisfy the formula 〈a〉�, while r
does not. On the other hand, q satisfies the formula [b]⊥, but neither p nor r do.

The following result stems from [6].

Proposition 2. Let p, q be states in image-finite LTSs with the same signature.
Then p �cc q iff the collection of covariant-contravariant modal formulae satis-
fied by p is included in the collection of covariant-contravariant modal formulae
satisfied by q.

3 From Covariant-Contravariant Simulations to Modal
Refinements

We are now ready to begin our study of the connections between MTSs modulo
refinement and LTSs modulo the covariant-contravariant simulation preorder.
First we show that, perhaps surprisingly, LTSs modulo �cc may be translated
into MTSs modulo �. Such a translation preserves, and reflects, those preorders
and the satisfaction of modal formulae.

Definition 6. Let P be an LTS with the set of actions A partitioned into Ar,
Al, and Abi. The MTS M(P) is constructed as follows:

– The set of actions of M(P) is A.
– The set of states of M(P) is the same as the one of P plus a new state u.
– For each transition p

a→ p′ in P , add a may transition p
a→� p′ in M(P).

– For each transition p
a→ p′ in P with a ∈ Ar ∪ Abi, add a must transition

p
a→� p′ in M(P).

– For each a in Ar and state p, add the transition p
a→� u to M(P), as well

as transitions u
a→� u for each action a ∈ A.

The following proposition essentially states that the translationM is correct.

Proposition 3. Let P and Q be two LTSs with the same signature, and let
p ∈ P and q ∈ Q. Then (P, p) �cc (Q, q) iff (M(P), p) � (M(Q), q).

Proof. We prove the two implications separately.
(⇒) Assume that R is a covariant-contravariant simulation. We shall prove

that M(R) = R ∪ {(u, q) | q a state of M(Q)} is a refinement.
Suppose that p R q and q

a→� q′ in M(Q). By the definition of M(Q), the
transition q

a→ q′ is in Q. If a ∈ Al ∪ Abi, since p R q and R is a covariant-
contravariant simulation, we have that p

a→ p′ in P for some p′ such that p′ R q′.
By the construction ofM(P), it holds that p

a→� p′ and we are done. If a ∈ Ar,
then p

a→� u and uM(R) q′, as required.
Assume now that p R q and p

a→� p′ in M(P). Then p
a→ p′ in P with

a ∈ Ar ∪Abi. As R is a covariant-contravariant simulation, it follows that q
a→ q′

www.manaraa.com

274 L. Aceto et al.

in Q for some q′ such that p′ R q′. Since a ∈ Ar ∪Abi, there is a must transition
q

a→� q′ inM(Q), and we are done. To finish the proof of this implication, recall
that, as shown in Example 1, q is a refinement of u for each q.

(⇐) Assume thatM(R) is a refinement. We shall prove that R is a covariant-
contravariant simulation.

Suppose that p R q and q
a→ q′ in Q with a ∈ Al ∪ Abi. Then q

a→� q′ in
M(Q). Since M(R) is a refinement, in M(P) we have that p

a→� p′ for some
p′ (different from u, because a /∈ Ar) such that p′ R q′. By the construction of
M(P), it follows that p

a→ p′ in P and we are done.
Suppose now that p R q and p

a→ p′ in P with a ∈ Ar ∪ Abi. Then p
a→� p′

inM(P). SinceM(R) is a refinement, there is some q′ (again, different from u)
such that q

a→� q′ inM(Q) and p′ R q′. By the construction ofM(Q), it follows
that q

a→ q′ in Q and we are done. ��
Definition 7. Let us extend M to translate formulae over the modal logic that
characterizes the covariant-contravariant simulation preorder to the modal logic
for modal transition systems by simply defining M(ϕ) = ϕ.

Proposition 4. If P is an LTS and ϕ is a formula of the logic that characterizes
covariant-contravariant simulation, then for each p ∈ P :

(P, p) |= ϕ ⇐⇒ (M(P), p) |=M(ϕ).

4 From Modal Refinements to Covariant-Contravariant
Simulations

We now show that MTSs modulo � may be translated into LTSs modulo �cc. As
the one studied in the previous section, our translation preserves, and reflects,
those preorders and the satisfaction of modal formulae.

Definition 8. Let M be an MTS with set of actions A. The LTS C(M), with
signature Ar = {cv(a) | a ∈ A}, Al = {ct(a) | a ∈ A} and Abi = ∅, is constructed
as follows:

– The set of states of C(M) is the same as that of M .

– For each transition p
a→� p′ in M , add p

ct(a)→ p′ to C(M).

– For each transition p
a→� p′ in M , add p

cv(a)→ p′ to C(M).

Observe that the LTSs obtained as a translation of an MTS have the following
properties:

1. Abi = ∅ and
2. there is a bijection h : Ar → Al such that if p

a→ p′ with a ∈ Ar then

p
h(a)→ p′.

The following proposition essentially states that the translation C is correct.

www.manaraa.com

Relating Modal Refinements, Covariant-Contravariant Simulations 275

Proposition 5. Let P and Q be two MTSs with the same action set, and let
p ∈ P and q ∈ Q. Then (P, p) � (Q, q) iff (C(P), p) �cc (C(Q), q).

Proof. We prove the two implications separately.

(⇒) Assume that p R q for some refinement R. If p
cv(a)→ p′ in C(P) then,

by construction, p
a→� p′ in P . Since R is a refinement, there is some q′ in Q

with q
a→� q′ and p′ R q′. Since q

cv(a)→ q′ is in C(Q) by construction, we are

done. Now, assume that q
ct(a)→ q′ in C(Q). Then q

a→� q′ in Q and, since R is a

refinement, p
a→� p′ in P for some p′ with p′ R q′. By construction, p

ct(a)→ p′ is
in C(P) and we are done.

(⇐) Assume that p R q for some covariant-contravariant simulation R. If

q
a→� q′ in Q then q

ct(a)→ q′ in C(Q) and, since R is a covariant-contravariant

simulation, p
ct(a)→ p′ for some p′ in C(P) such that p′Rq′; hence p

a→� p′ in P as

required. Now, if p
a→� p′ in P then p

cv(a)→ p′ in C(P). Since R is a covariant-

contravariant simulation, there is some q′ in C(Q) with q
cv(a)→ q′ and p′ R q′,

and therefore q
a→� q′ in Q. ��

Definition 9. Let us extend C to translate formulae over the modal logic for
modal transition systems with set of actions A to the modal logic that charac-
terizes covariant-contravariant simulation with signature Ar = {cv(a) | a ∈ A},
Al = {ct(a) | a ∈ A} and Abi = ∅.
– C(⊥) = ⊥.
– C(�) = �.
– C(ϕ ∧ ψ) = C(ϕ) ∧ C(ψ).
– C(ϕ ∨ ψ) = C(ϕ) ∨ C(ψ).
– C(〈a〉ϕ) = 〈cv(a)〉C(ϕ).
– C([a]ϕ) = [ct(a)]C(ϕ).

Proposition 6. If P is an MTS and ϕ a modal formula, then for each p ∈ P :

(P, p) |= ϕ ⇐⇒ (C(P), p) |= C(ϕ).

5 Discussion of the Translations

In Sections 3–4, we saw that it is possible to translate back and forth between the
world of LTSs modulo the covariant-contravariant simulation preorder and MTSs
modulo refinement. The translations we have presented preserve, and reflect, the
preorders and the relevant modal formulae. There are, however, some interesting,
and non-obvious, corollaries that one may infer from the translations.

To begin with, assume that P and Q are two LTSs with the same signa-
ture with Abi �= ∅. Let p ∈ P and q ∈ Q be such that (P, p) �cc (Q, q). By
Proposition 3, we know that this holds exactly when (M(P), p) � (M(Q), q).
Using Proposition 5, we therefore have that checking whether (P, p) �cc (Q, q) is

www.manaraa.com

276 L. Aceto et al.

equivalent to verifying whether (C(M(P)), p) �cc (C(M(Q)), q). Note now that
Abi is empty in the signature for the LTSs C(M(P)) and C(M(Q)). Therefore
checking whether two states are related by the covariant-contravariant simula-
tion preorder can always be reduced to an equivalent check in a setting without
bivariant actions.

It is also natural to wonder whether there is any relation between a state
p in an LTS P and the equally-named state in C(M(P)). Similarly, one may
wonder whether there is any relation between a state p in an MTS P and the
equally-named state inM(C(P)). In both cases, we are faced with the difficulty
that the transition systems resulting from the compositions of the translations
are over actions of the form {cv(a), ct(a) | a ∈ A} whereas the original systems
had transitions labelled by actions in A. In order to overcome this difficulty, let
ρ : {cv(a), ct(a) | a ∈ A} → A be the renaming that, for each a ∈ A, maps
both cv(a) and ct(a) to a. For any transition system P over the set of actions
{cv(a), ct(a) | a ∈ A}, we write ρ(P) for the transition system that is obtained
from P by renaming the label of each transition in P as indicated by ρ.

Proposition 7.

1. Let P be an MTS and let p ∈ P . Then (ρ(M(C(P))), p) � (P, p).
2. Let P be an LTS and let p ∈ P . Then (P, p) �cc (ρ(C(M(P))), p).
3. In general, (P, p) � (ρ(M(C(P))), p) does not hold for an MTS P and a

state p ∈ P , nor does (ρ(C(M(P))), p) �cc (P, p) for an LTS P and a state
p ∈ P .

Definition 10. Let P be an LTS with the set of actions partitioned into Ar and
Al. The LTS P is obtained from P by renaming every a ∈ Ar as cv(a) and every
a ∈ Al as ct(a).

Proposition 8. Let P be an LTS over a set of actions Ar ∪Al and let Q be an
MTS over the same actions. Then the following statements hold.

1. If a relation R is a covariant-contravariant simulation between P and C(Q)
then R is a refinement between M(P) and Q.

2. If (P , p) �cc (C(Q), q) then (M(P), p) � (Q, q), for all states p ∈ P and
q ∈ Q.

3. The converse implication of the above statement fails.

6 Partial Bisimulation

The partial bisimulation preorder has been recently proposed in [2] as a suitable
behavioural relation over LTSs for studying the theory of supervisory control [15]
in a concurrency-theoretic framework. Formally, the notion of partial bisimula-
tion is defined over LTSs with a set of actions A and a so-called bisimulation set
B ⊆ A. The LTSs considered in [2] also include a termination predicate ↓ over
states. For the sake of simplicity, since its role is orthogonal to our aims in this pa-
per, instead of extending MTSs and their refinements or covariant-contravariant
simulations with such a predicate, we simply omit it in what follows.

www.manaraa.com

Relating Modal Refinements, Covariant-Contravariant Simulations 277

Definition 11. A partial bisimulation with bisimulation set B between two
LTSs P and Q is a relation R ⊆ P ×Q such that, whenever p R q:

– For all a ∈ A, if p
a→ p′ then there exists some q

a→ q′ with p′ R q′.
– For all b ∈ B, if q

b→ q′ then there exists some p
b→ p′ with p′ R q′.

We write p �B q if p R q for some partial bisimulation with bisimulation set B.

It is easy to see that partial bisimulation with bisimulation set B is a particular
case of covariant-contravariant simulation.

Proposition 9. Let P be an LTS. A relation R is a partial bisimulation with
bisimulation set B iff it is a covariant-contravariant simulation when the LTS
P has signature Ar = A \B, Al = ∅ and Abi = B. Therefore, p �B q iff p �cc q
with respect to that partition of A, for each p, q ∈ P .

As a corollary of the above proposition, we immediately obtain the following
result, to the effect that, instead of the modal logic used in [2] to characterize the
partial bisimulation preorder with bisimulation set B, one can use the simpler,
negation-free logic for the covariant-contravariant simulation preorder.

Corollary 1. Let p, q be states in some image-finite LTS. Then p �B q iff the
collection of formulae in Definition 5 over signature Ar = A \ B, Al = ∅ and
Abi = B satisfied by p is included in the collection of formulae satisfied by q.

Note also that, as a corollary of Proposition 9, the translations of LTSs and
formulae defined in Section 3 can be applied to embed LTSs modulo the partial
bisimulation preorder into modal transition systems modulo refinement. In this
case, however, there is an easier transformation that does not require the extra
state u.

Definition 12. Let P be an LTS over a set of actions A with a bisimulation set
B ⊆ A. The MTS N (P) is constructed as follows:

– The set of states is that of P .
– For each transition p

a→ p′ in P , add a may transition p
a→� p′ in N (P).

– For each transition p
b→ p′ in P with b ∈ B, add a must transition p

b→� p′

in N (P).

Proposition 10. R is a partial bisimulation with bisimulation set B between P
and Q iff R−1 is a refinement between N (Q) and N (P).

Proof. (⇒) Assume that R is a partial bisimulation with bisimulation set B

and suppose that q R−1 p. If p
a→� p′ in N (P) then p

a→ p′ in P . Since R is a
partial bisimulation, there is some q

a→ q′ in Q with p′ R q′ and, by construction,
q

a→� q′ in N (Q) with q′ R−1 p′. Now, if q
a→� q′ in N (Q) then q

a→ q′ in Q

with a ∈ B. Since R is a partial bisimulation and p R q, there is some p
a→ p′ in

P with p′ R q′ and hence p
a→� p′ in N (P), as required.

(⇐) Analogous. ��

www.manaraa.com

278 L. Aceto et al.

Remark 1. In the special case B = ∅, the partial bisimulation preorder is just
the standard simulation preorder. Therefore, letting 0 denote a one-state LTS
with no transitions, 0 �B p for each state p in any LTS P . Since B = ∅, all
the modal transition systems N (P) that result from the translation of an LTS
P will have no must transitions; for such modal transition systems, N (P) � 0
always holds. Indeed, in that case � coincides with the inverse of the simulation
preorder over MTSs.

The drawback of the direct transformation presented in Definition 12, as com-
pared to that in Section 3, is that it does not preserve the satisfiability of modal
formulae. The problem lies in the fact that, while the existential modality 〈a〉 al-
lows any transition with a ∈ A in the partial bisimulation framework, it requires
a must transition in the setting of MTSs.

As we have seen, it is easy to express partial bisimulations as a special case
of covariant-contravariant simulations. It is therefore natural to wonder whether
the converse also holds. We shall present some indications that the partial bisim-
ulation framework is strictly less expressive than both modal refinements and
covariant-contravariant simulations.

Let us assume, by way of example, that the set of actions A is partitioned into
Ar = {a} and Al = {b}—so the set of bivariant actions is empty. In this setting,
there cannot be a translation T from LTSs modulo �cc into LTSs modulo �B

that satisfies the following natural conditions (by abuse of notation, we identify
an LTS P with a specific state p):

1. For all p and q, p �cc q ⇐⇒ T (p) �B T (q).
2. T is a homomorphism with respect to +, that is, T (p + q) = T (p) + T (q),

where + denotes the standard notion of nondeterministic composition of
LTSs from CCS [13]. (Intuitively, this compositionality requirement states
that the translation is based on ‘local information’.)

3. There is an n such that T (bn) is not simulation equivalent to T (0), where
bn denotes an LTS consisting of n consecutive b-labelled transitions.

Indeed, observe that, by condition 2,

T (p) = T (p + 0) = T (p) + T (0) for each p,

and therefore T (p) + T (0) �B T (p). This means that T (0) � T (p) for each p,
where � is the simulation preorder. In particular, T (0) � T (⊥) where ⊥ is the
process consisting of a b-labelled loop with one state, which is the least element
with respect to �cc.

Note now that ⊥ �cc bn+1 �cc bn �cc 0 for each n > 0. Therefore, by
condition 1,

T (⊥) �B T (bn+1) �B T (bn) �B T (0) for each n > 0.

Hence,
T (⊥) � T (bn) � T (0) � T (⊥) for each n > 0.

www.manaraa.com

Relating Modal Refinements, Covariant-Contravariant Simulations 279

This yields that, for each n > 0, T (bn) is simulation equivalent to T (0), which
contradicts condition 3. (Note that we have only used the soundness of the
transformation T .)

This indicates strongly that any T that is compositional with respect to +
and is sound, in the sense of condition 1, would have to be very odd indeed, if
it exists at all. Modulo simulation equivalence, such a translation would have
to conflate a non-well-founded descending chain of LTSs into a point modulo
simulation equivalence.

We end this section with a companion result.

Proposition 11. Assume that a ∈ Ar and b ∈ Al. Suppose furthermore that
B = ∅. Then there is no translation T from LTSs modulo �cc into LTSs modulo
�B that satisfies conditions 1 and 2 above.

7 Institutions and Institution Morphisms

In order to gain more insight into the relationships between modal transition sys-
tems modulo refinement and labelled transition systems modulo the covariant-
contravariant simulation preorder, we will now study their connections at a more
abstract level in the context of institutions [9]. When compared at the level of
institutions it turns out that the correspondence between these models is, in a
sense, not one-to-one.

Definition 13. The institution Icc = (Signcc, sencc,Modcc, |=cc), associated
to the logic for the covariant-contravariant simulation preorder, is defined as
follows.

– Signcc has as objects triples (A, B, C) of pairwise disjoint sets and mor-
phisms f : A ∪ B ∪ C −→ A′ ∪ B′ ∪ C′ with f(A) ⊆ A′, f(B) ⊆ B′, and
f(C) ⊆ C′.

– sencc(A, B, C) is the set of formulae in the logic characterizing the covariant-
contravariant simulation preorder, with A the set of covariant actions, B the
set of contravariant actions, and C the set of bivariant actions. sen(f)(ϕ)
is obtained from ϕ by replacing each action a with f(a).

– Modcc(A, B) is the category of LTS over the set of actions A ∪ B ∪ C,
with a distinguished state; a morphism from (P, p) to (Q, q) is a covariant-
contravariant simulation R such that (p, q) ∈ R.
Now, if f : A ∪B ∪ C −→ A′ ∪B′ ∪C′, then

Modcc(f) : Modcc(A′, B′, C′) −→Modcc(A, B, C)

maps P to P |f and R : P −→ Q to Rf : P |f −→ Q|f , where:
• The set of states of P |f is the same as that of P , and the distinguished

state remains the same.
• p

a→ p′ in P |f if p
f(a)→ p′ in P .

• R|f coincides with R.

www.manaraa.com

280 L. Aceto et al.

– (P, s) |=cc ϕ if (P, s) |= ϕ using the notion of satisfaction associated to
the logic for the covariant-contravariant simulation preorder given in Defi-
nition 5.

Proposition 12. Icc is an institution.

Definition 14. The institution Imts = (Signmts , senmts ,Modmts , |=mts), as-
sociated to the logic for refinement over modal transition systems, is defined as
follows.

– Signmts is the category of sets.
– senmts(A) is the set of formulae over A in the logic presented in Definition 3.

The formula senmts(f)(ϕ) is obtained from ϕ by replacing each action a with
f(a).

– Modmts(A) is the category of MTSs over the set of labels A, with a distin-
guished state. A morphism from (M, m) to (N, n) is a refinement R such
that (m, n) ∈ R.
If f : A −→ B in Signmts , then Modmts(f) : Modmts(B) −→Modmts(A)
maps an MTS M to M |f and a morphism R to R|f , where:
• M |f has the same set of states as M and the same distinguished state.

• p
a→� p′ in M |f if p

f(a)→ � p′ in M .

• p
a→� p′ in M |f if p

f(a)→ � p′ in M .
• R|f coincides with R.

– |=mts is the notion of satisfaction presented in Definition 3.

Proposition 13. Imts is an institution.

As the following result shows, one can translate Imts into Icc using an institu-
tion morphism. (The intuition for institution morphisms is that they are truth
preserving translations from one logical system into another.)

Proposition 14. (Φ, α, β) : Imts −→ Icc is an institution morphism, where:

– Φ : Signmts −→ Signcc maps A to the triple (cv(A), ct(A), ∅), with:
• cv(A) = {cv(a) | a ∈ A} and
• ct(A) = {ct(a) | a ∈ A}.

For f : A −→ B, we define Φ(f)(cv(a)) = cv(f(a)) and Φ(f)(ct(a)) =
ct(f(a)).

– The natural transformation α : sencc ◦Φ ⇒ senmts translates a formula ϕ
in sencc(cv(A), ct(A), ∅) as follows:
• α(�) = �, α(⊥) = ⊥.
• α(ϕ1 ∧ ϕ2) = α(ϕ1) ∧ α(ϕ2).
• α(ϕ1 ∨ ϕ2) = α(ϕ1) ∨ α(ϕ2).
• α(〈cv(a)〉ϕ) = 〈a〉α(ϕ).
• α([ct(a)]ϕ) = [a]α(ϕ).

– The natural transformation β : Modmts ⇒Modcc ◦Φ maps an MTS (M, s)
in Modmts(A) to (C(M), s), and a morphism R to itself.

www.manaraa.com

Relating Modal Refinements, Covariant-Contravariant Simulations 281

The import of the above result is that MTSs modulo refinement and its ac-
companying modal logic can be ‘translated in a truth preserving fashion’ into
LTSs modulo the covariant-contravariant simulation preorder and its companion
modal logic. It is natural to ask oneself whether one can consider Imts a ‘subin-
stitution’ of Icc. There are several related notions of subinstitution that have
in common the requirement that the functor β, which is used to translate the
models between the institutions, is an equivalence of categories.

Recall that an object in a category is weakly final if any other object has at
least one arrow into it.

Proposition 15. Modcc(A, B, ∅) has weakly final objects but Modmts(A) does
not.

In other words, in the absence of bivariant actions, there is a universal imple-
mentation in the setting of LTSs modulo the covariant-contravariant simulation
preorder. Within that framework, there is also a universal specification, namely
the LTS (I, s) where I is the LTS with a single state s and transitions s

b→ s for
every b ∈ B. On the other hand, there is a universal specification with respect
to modal refinements, namely the MTS U from Example 1, but no universal
implementation.

Proposition 16. There is no embedding from Imts into Icc.
A natural question to ask is whether there is an embedding from Icc into Imts .
The following proposition answers this question negatively.

Proposition 17. There exists no embedding from Icc into Imts .

We conjecture that there is not even an institution morphism from Icc to Imts .
(Compare with Proposition 14.)

8 Conclusions and Future Work

In this paper we have studied the relationships between three notions of be-
havioural preorders that have been proposed in the literature: refinement over
modal transition systems, and the covariant-contravariant simulation and the
partial bisimulation preorders over labelled transition systems. We have provided
mutual translations between modal transition systems and labelled transition
systems that preserve, and reflect, refinement and the covariant-contravariant
simulation preorder, as well as the the modal properties that can be expressed
in the logics that characterize those preorders. We have also offered a transla-
tion from labelled transition systems modulo the partial bisimulation preorder
into the same model modulo the covariant-contravariant simulation preorder,
together with some evidence that the former model is less expressive than the
latter. Finally, in order to gain more insight into the relationships between modal
transition systems modulo refinement and labelled transition systems modulo the

www.manaraa.com

282 L. Aceto et al.

covariant-contravariant simulation preorder, we have also phrased and studied
their connections in the context of institutions.

The work presented in the study opens several interesting avenues for future
research. Here we limit ourselves to mentioning a few research directions that
we plan to pursue in future work.

First of all, it would be interesting to study the relationships between the
LTS-based models we have considered in this article and variations on the MTS
model surveyed in, for instance, [1]. In particular, the third author recently
contributed in [7] to the comparison of several refinement settings, including
modal and mixed transition systems. The developments in that paper offer a
different approach to the comparison and application of the formalisms studied
in this article.

In [6], three of the authors gave a ground-complete axiomatization of the
covariant-contravariant simulation preorder over the language BCCS [13]. It
would be interesting to see whether the translations between MTSs and LTSs we
have provided in this paper can be used to lift that axiomatization result, as well
as results on the nonexistence of finite (in)equational axiomatizations, to the set-
ting of modal transition systems modulo refinement, using the BCCS-like syntax
for MTSs given in [3]. We also intend to study whether our translations can be
used to obtain characteristic-formula constructions [3,10,16] for one model from
extant results on the existence of characteristic formulae for the other.

The existence of characteristic formulae allows one to reduce checking the
existence of a behavioural relation between two processes to a model checking
question. Conversely, the main result from [3] offers a complete characterization
of the model checking questions of the form (M, m) |= ϕ, where M is an MTS
and ϕ is a formula in the logic for MTSs considered in this paper, that can be
reduced to checking for the existence of a refinement between (Mϕ, mϕ) and
(M, m), where (Mϕ, mϕ) is an MTS with a distinguished state that ‘graphically
represents’ the formula ϕ. In future work, we plan to offer a characterization of
the logical specifications that can be ‘graphically represented’ by LTSs modulo
the covariant-contravariant simulation preorder and partial bisimilarity. Such
characterizations may shed further light on the relative expressive power of the
two formalisms and may give further evidence of the fact that LTSs modulo the
covariant-contravariant simulation preorder are, in some suitable formal sense,
more expressive than LTSs modulo partial bisimilarity.

From the theoretical point of view, it would also be satisfying to settle our
conjecture that there is no institution morphism from Icc to Imts .

Last, but not least, the development of the notion of partial bisimulation in [2]
has been motivated by the desire to develop a process-algebraic model within
which one can study topics in the field of supervisory control [15]. Recently, MTSs
have been used as a suitable model for the specification of service-oriented appli-
cations, and results on the supervisory control of systems whose specification is
given in that formalism have been presented in, e.g., [4,8]. It is a very interesting
area for future research to study whether the mutual translations between MTSs
modulo refinement and LTSs modulo the covariant-contravariant simulation

www.manaraa.com

Relating Modal Refinements, Covariant-Contravariant Simulations 283

preorder can be used to transfer results on supervisory control from MTSs to
LTSs. One may also wish to investigate directly the adaptation of the supervi-
sory control theory of Ramadge and Wonham to the enforcement of specifications
given in terms of LTSs modulo the covariant-contravariant simulation preorder.

References

1. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wa̧sowski, A.: 20 years of modal
and mixed specifications. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 95, 94–129
(2008)

2. Baeten, J., van Beek, D., Luttik, B., Markovski, J., Rooda, J.: Partial bisimula-
tion. SE Report 2010-04, Systems Engineering Group, Department of Mechanical
Engineering, Eindhoven University of Technology (2010)

3. Boudol, G., Larsen, K.G.: Graphical versus logical specifications. Theoretical Com-
put. Sci. 106(1), 3–20 (1992)

4. Darondeau, P., Dubreil, J., Marchand, H.: Supervisory control for modal speci-
fications of services. In: Proceedings of WODES 2010, Berlin, Germany, August
30–September 1 (2010) (to appear)

5. Fábregas, I., de Frutos Escrig, D., Palomino, M.: Non-Strongly Stable Orders also
Define Interesting Simulation Relations. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.)
CALCO 2009. LNCS, vol. 5728, pp. 221–235. Springer, Heidelberg (2009)

6. Fábregas, I., de Frutos Escrig, D., Palomino, M.: Logics for Contravariant Simula-
tions. In: Hatcliff, J., Zucca, E. (eds.) FMOODS/ FORTE 2010. LNCS, vol. 6117,
pp. 224–231. Springer, Heidelberg (2010)

7. Fecher, H., de Frutos-Escrig, D., Lüttgen, G., Schmidt, H.: On the Expressiveness of
Refinement Settings. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961,
pp. 276–291. Springer, Heidelberg (2010)

8. Feuillade, G., Pinchinat, S.: Modal specifications for the control theory of discrete
event systems. Discrete Event Dynamical Systems 17, 211–232 (2007)

9. Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification
and programming. J. ACM 39(1), 95–146 (1992)

10. Graf, S., Sifakis, J.: A modal characterization of observational congruence on finite
terms of CCS. Information and Control 68(1–3), 125–145 (1986)

11. Larsen, K.G.: Modal Specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990)

12. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proceedings of 3rd An-
nual Symposium on Logic in Computer Science, Edinburgh, pp. 203–210. IEEE
Computer Society Press (1988)

13. Milner, R.: Communication and Concurrency. Prentice-Hall International, Engle-
wood Cliffs (1989)

14. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

15. Ramadge, P., Wonham, W.: Supervisory control of a class of discrete event pro-
cesses. SIAM Journal of Control and Optimization 25, 206–230 (1987)

16. Steffen, B., Ingólfsdóttir, A.: Characteristic formulae for processes with divergence.
Information and Computation 110(1), 149–163 (1994)

www.manaraa.com

Decidability of Behavioral Equivalences

in Process Calculi with Name Scoping�

Chaodong He, Yuxi Fu, and Hongfei Fu

BASICS, Department of Computer Science,
Shanghai Jiao Tong University, Shanghai 200240, China,

MOE-MS Key Laboratory for Intelligent Computing and Intelligent Systems

Abstract. Local channels and their name scoping rules play a signifi-
cant role in the study of the expressiveness of process calculi. The paper
contributes to the understanding of the expressiveness in the context
of CCS by studying the decidability issues of the bisimilarity/similarity
checking problems. The strong bisimilarity for a pair of processes in
the calculi with only static local channels is shown Π0

1 -complete. The
strong bisimilarity between those processes and the finite state processes
is proved decidable. The strong similarity between the finite state pro-
cesses and the processes without name-passing capability is also shown
decidable.

1 Introduction

Process calculi are usually Turing complete. The known proofs of Turing com-
pleteness share the same guideline that counting is represented as the nesting of
suitable components [4,6,20]. In the name-passing calculi [24,26], the encodings
of counter [4,6] depend on the existence of local channels and some degrees of
name-passing capabilities. In the setting of CCS-like calculi, there are several
Turing complete variants in which local channels are provided by the localiza-
tion operation while name-passing capabilities are partly obtained by an explicit
operation such as parametric definition [23,11] or relabeling [22], or by an implicit
dynamic-scoping recursion [28,4].

A fundamental problem in the area of system verification is that of equiva-
lence (or preorder) checking [3]. In concurrency theory these are the problems
of deciding whether two given processes are behaviorally equal, or whether one
process is behavioral close to the other. Among these equivalences (or preorders),
bisimilarity (or similarity) plays a prominent role.

This paper explores the decidability issues of bisimilarity/similarity checking
problems for various subcalculi of CCS classified by different name scoping rules,
in which the capability of producing and manipulating local channels becomes
weaker and weaker. These decidability results contribute to the understanding
of the way productions and mobilities of local channels affect the expressiveness.

� The work is supported by NSFC (60873034, 61033002).

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 284–298, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

Decidability of Behavioral Equivalences 285

CCSμ
◦ �� CCSμ

• �� CCSμ �� CCSPdef

CCS!
◦ ��

��

CCS!
• ��

��

CCS!

��

Fig. 1. CCS Hierarchy

The seven subcalculi of CCS studied in this paper are given in Fig. 1. In the
diagram an arrow ‘ �� ’ indicates the sub-language relationship. These seven
subcalculi are further divided into four classes in which the scoping rules of local
channel names are weakened gradually.

The first class contains CCSPdef , the full CCS with parametric definition (but
without relabeling), which is known to be Turing complete [11]. In CCSPdef

process copies can be nested at arbitrary depth by the name-passing capability
offered by parametric definition. Turing completeness implies that all behavioral
equivalences and preorders for CCSPdef are undecidable.

The second class contains CCSμ and CCS!. These two subcalculi have the
power of producing new local channels but do not have the power of passing
names around. In both models the infinite behaviors are specified by (static
scoping) recursion and replication respectively. They are not Turing complete
because they are not expressive enough to define the process Counter in the
sense of Section 2.5 of [10]. For the readers unfamiliar with the static scoping
recursion, we give the following illustration. Static scoping and dynamic scoping
are different ways of manipulating local names when unfolding recursions [11,10].

When a process is defined as P
def
= μX.(a | (a)(a |X)), the static scoping re-

quires that the local a and the global a must be distinguished before unfold-
ing. That is, μX.(a | (a)(a |X)) is understood the same as μX.(a | (a′)(a′ |X)).
The recursion used in [4,6] admits dynamic scoping, meaning that P should
be understood as a | (a)(a | a | (a)(a |P)), which induces the infinite computation

P
τ−→ a | (a)(0 |0 | (a)(a |P)) τ−→ It is pointed out in [11] that the dynamic

scoping recursion can be encoded via parametric definition. For this reason we
shall only consider the parametric definition in this paper.

The third class contains CCSμ• and CCS!•. They are the subcalculi of CCSμ

and CCS! which have only static local names. Here ‘static’ means that no local
channels can be produced during the evolution of a process. In these situa-
tions, localizations can only act as the outermost constructors, and processes
in CCSμ• and CCS!

• can be assumed in the form (ã)P where the inner process
P is localization-free. In this paper the word ‘static’ is only used in the con-
text of ‘static local names’ in order to avoid confusion with the ‘static scoping
recursion’.

The fourth class contains CCSμ◦ and CCS!◦, where the localization operator
are removed completely. For those subcalculi, strong bisimilarity is decidable [7].

www.manaraa.com

286 C. He, Y. Fu, and H. Fu

L L∼L L∼FS FS�L L�FS

CCS!
◦ � [7] � [7] ? ?

CCSμ
◦ � [7] � [7] ? ?

CCS!
• ? ? ? ?

CCSμ
• ? ? ? ?

CCS! ? ? ? ?

CCSμ ? ? ? ?

CCSPdef × [4,11] × [4,11] × [4,11] × [4,11]

“∼”: strong bisimilarity
“�”: strong similarity

“�”: known decidable
“×”: known undecidable
“?”: unknown

Fig. 2. Problems to Explore

We will use notation L1∼L2 (or L1
L2) to indicate the problem of check-
ing strong bisimilarity (or strong similarity) between an L1 process and an L2

process. These problems are indicated by the question marks in the table of
Fig. 2. The notation FS stands for the class of the finite state processes. The
contributions of this paper are summarized as follows.

– We show the undecidability (Π0
1 -hardness) of CCS

μ
• ∼CCSμ• by a reduction

from the halting problem of Minsky Machine. The relevant technique is called
‘Defender’s Forcing’ [14,18], which is widely used in undecidability proofs
for bisimilarity checking. Typical examples of this technique can also be
found in [17,18]. The reduction is then modified to show the undecidability
(Π0

1 -hardness) of CCS
!
•∼CCS!•. This resolves the four problems in the first

column of the table.
– Busi, Gabbrielli and Zavattaro establish in [5] the undecidability (Σ0

1 -
hardness) of the weak bisimilarity of CCS!. By modifying the proof of Busi et
al., CCS!∼FS is shown undecidable (Π0

1 -hard), which immediately implies
the undecidability (Π0

1 -hardness) of CCS
μ∼FS.

– By constructing a translation from CCS!• to the Labeled Petri Net, we
demonstrate the decidability of CCS!•∼FS, CCS!•
FS and FS
CCS!

•,
making use of Jančar and Moller’s decidability result [16] on the Labeled
Petri Nets. The same approach applies to CCSμ• .

– We show that FS
CCS! is decidable. The technique used in the proof is
simulation base, originated from the technique of bisimulation base pioneered
by Caucal and widely used in decidability proofs of bisimilarity. Our proof
also makes use of expansion tree presented in [17] and the well-structured
transition system [8] for CCS! [4,10]. In literature there are examples of
formalisms [19] in which bisimilarity is decidable while similarity is not. We
are not aware of any examples showing that the opposite situation happens.
This result is more or less surprising.

The finite branching property guarantees that the bisimilarity can be approx-
imated in the sense that P �∼ Q if and only if P �∼n Q for some n. The
approximation can also be applied to the similarity relation. It necessarily im-
plies that all the problems in Fig. 2 are actually in Π0

1 . So we only need to
show Π0

1 -hardness to get Π0
1 -completeness. We remark that a relation R(x) is

in Σ0
1 (resp. Π0

1) in arithmetic hierarchy if it can be expressed by ∃y.S(x, y)

www.manaraa.com

Decidability of Behavioral Equivalences 287

Choice ∑n
i=1 λi.Ei

λi−→ Ei

Composition
E

λ−→ E′

E |F λ−→ E′ |F
E

l−→ E′ F
l−→ F ′

E |F τ−→ E′ |F ′

Localization
E

λ−→ E′ a not appear in λ

(a)E
λ−→ (a)E′

Fixpoint
E{μX.E/X} λ−→ E′

μX.E
λ−→ E′

Fig. 3. Semantics of CCSμ

(resp. ∀y.S(x, y)) for some decidable relation S(x, y). Clearly R(x) is in Σ0
1 if

and only if its complement is in Π0
1 .

The rest of the paper is organized as follows. Section 2 lays down the prelimi-
naries. Section 3 investigates the problems of deciding the strong bisimilarity on
the CCSμ processes and the CCS! processes. Section 4 considers the problem of
deciding the strong bisimilarity/similarity between a CCS!/CCSμ process and a
finite state process. Section 5 gives concluding remarks.

Most proofs and technical details are omitted. See [13] for complete coverage.

2 Basic Definition and Notation

To describe the interactions between systems, we need channel names. The set
of the names N is ranged over by a, b, c, . . . , and the set of the names and
the conames N ∪ N is ranged over by l, The set of the action labels A =
N ∪N ∪ {τ} is ranged over by λ. To define the fixpoint operator and we need a
set of process variables V ranged over by X,Y, Z.

The set ECCSμ of CCSμ terms is generated by the following grammar.

E ::= 0 | X |
n∑

i=1

λi.Ei | E |E′ | (a)E | μX.E.

A name a appeared in a localization term (a)E is local. A name is global if it is
not local. The variable X in the fixpoint term μX.E is bound. A variable is free
if it is not bound. A CCSμ term containing no free variables is a CCSμ process.

In μX.E it is not required that X be guarded in E because unguarded recur-
sion can be encoded by guarded recursion in CCSμ [10]. With guarded recursion
and guarded choice

∑n
i=1 λi.Ei, finite branching property is guaranteed. Once

unguarded recursion is admitted, replication !P can be defined by the recursion
μX.(X |P).

The standard semantics of CCSμ is given by the labeled transition system
(ECCSμ ,A,−→), where the elements of ECCSμ are often referred to as states. The
relation −→ ⊆ ECCSμ × A × ECCSμ is the transition relation. The membership

(E, λ,E′) ∈ −→ is always indicated by E
λ−→ E′. The relation −→ is generated

inductively by the rules defined in Fig. 3. The symmetric rules are omitted.
Standard notations and conventions in process calculi will be used through-

out the paper. The inactive process 0 is omitted in most occasions. For instance

www.manaraa.com

288 C. He, Y. Fu, and H. Fu

a.b.0 is abbreviated to a.b. A finite sequence (or set) of names a1, . . . , an is
often abbreviated to ã. The guarded choice term

∑n
i=1 λi.Ei is usually writ-

ten as λ1.E1 + · · · + λn.En. Processes are not distinguished syntactically up to
the commutative monoid generated by ‘+’ and ‘ | ’. We shall write

∏n
i=1 Pi for

P1 | . . . |Pn. The notation ‘≡’ is used to indicate syntactic congruence. We shall
write PL for the set of the processes definable in L. The set of the derivatives
of a process P , denoted by Drv(P), is the set of the processes P ′ such that

P
λ1−→ · · · λn−→ P ′ for some n ≥ 0 and λ1, . . . , λn ∈ A.
CCS! is obtained from CCSμ by using the replication instead of the fixpoint

operation. The grammar is defined as follows:

P ::= 0 |
n∑

i=1

λi.Pi | P |P ′ | (a)P | !P.

The operational semantics of the replication stated below is from [4,5], which
enjoys the finite branching property.

Replication
P

λ−→ P ′

!P
λ−→ P ′ | !P

P
l−→ P ′ P

l−→ P ′′

!P
τ−→ P ′ |P ′′ | !P

The advantage of the replication is that one could give a first order presentation
of CCS. There is no need for process variables. This is why the above grammar
and rules are defined on the set of the processes, not on the set of the terms.

A binary relation R on PL is a strong simulation if, for each pair (P,Q) ∈ R,
P can be simulated by Q in the following sense:

If P
λ−→ P ′, then Q

λ−→ Q′ for some Q′ such that (P ′, Q′) ∈ R.

A binary relation R is a strong bisimulation if both R and its inverse R−1

are strong simulations. The strong similarity
 is the largest strong simulation,
and the strong bisimilarity ∼ is the largest strong bisimulation. The former is a
preorder and the latter is an equivalence.

Strong bisimilarity has a game theoretic characterization known as the bisim-
ulation game. It is a complete-information dynamic game played by two players
named ‘attacker’ and ‘defender’. The labeled transition system (PL,A,−→) is
perceived as a game-board. During the play the current position is described by
a pair of states (P1, P−1) ∈ PL × PL. The game is played in rounds. In each
round the players change the position according to the following rules:

1. The attacker chooses a state i ∈ {1,−1}, an action λ ∈ A, and some P ′
i ∈ PL

such that Pi
λ−→ P ′

i .

2. The defender responds by choosing some P ′
−i ∈ PL such that P−i

λ−→ P ′
−i;

and then (P ′
1, P

′
−1) becomes the current position of the next round.

If the defender never gets stuck, it wins. Otherwise the attacker wins. It is easy
to see that the defender has a winning strategy in the bisimulation game starting
from the position (P,Q) if and only if P ∼ Q.

www.manaraa.com

Decidability of Behavioral Equivalences 289

3 Undecidability of Strong Bisimilarity

This section aims at the undecidability of CCSμ∼CCSμ and CCS!∼CCS!. In
fact, by many-one reductions from the halting problem of Minsky Machines, it
can be shown that both CCSμ• ∼CCSμ• and CCS!•∼CCS!• are Π0

1 -complete.
Two-registerMinsky Machine is a well-known Turing complete computational

model [25]. A Minsky Machine R has two registers r1 and r2 that can hold
arbitrary large natural numbers. The behavior of R is specified by a sequence
of instructions {(1 : I1), (2 : I2), . . . , (n − 1 : In−1), (n : halt)}. For each i ∈
{1, . . . , n− 1}, the i-th instruction may be in one of two forms:

- (i : Succ(rj)): The instruction adds 1 to the content of the register rj and
i+ 1 becomes the value of the program counter.

- (i : Decjump(rj , s)): If the content of the register rj is not zero, the instruc-
tion decreases it by 1 and i + 1 becomes the value of the program counter;
otherwise s becomes the value of the program counter.

The configuration of R is given by the tuple (i; c1, c2) where i is the program
counter indicating the instruction to be executed, and c1,c2 are the current
contents of the registers. The computation of R is defined in a natural way via
a (finite or infinite) sequence of configurations starting from a certain initial
configuration. Whenever the n-th instruction (known as the halting state) is
reached, the computation terminates.

The halting problem of Two-register Minsky Machines, whose undecidability
is well-known, is formally stated as follows:

Problem: HaltingMinskyMachine

Instance: A Two-register Minsky Machine R.
Question: Does the computation of R terminate when R starts from the initial

configuration (1; 0, 0)?

Lemma 1. HaltingMinskyMachine is undecidable. It is Σ0
1-complete in the

arithmetic hierarchy.

If a process calculus L is able to encode the computation of a Minsky Machine
faithfully, undecidability of L∼L can be obtained by a straightforward reduction
from HaltingMinskyMachine, which confirms that the i-th Minsky Machine
Ri does not halt if and only if the interpretation PRi of Ri is strongly bisimilar
to !τ . Recall that there is no such reduction for any calculi in Fig. 1 except for
CCSPdef .

In the rest of this section, we outline the reductions that demonstrate the
undecidability of CCSμ• ∼CCSμ• and CCS!•∼CCS!•.

3.1 Undecidability of CCSµ
• ∼CCSµ

•

The idea is to construct a CCSμ• process which models a given Minsky Machine R
in a nondeterministic fashion. The encoding is nondeterministic because it intro-
duces unfaithful computations which do not follow the expected behavior of R.

www.manaraa.com

290 C. He, Y. Fu, and H. Fu

Two slightly modified copies of the constructed process are taken for bisimilarity
checking. The modifications guarantee that in the bisimulation game, whenever
the attacker takes the ‘unfaithful’ move at some round, the defender have the
ability to punish the attacker by moving to a pair of trivially bisimilar states.
Thus the attacker are ‘forced’ to take the ‘faithful’ move at each round and the
defender will lose the game if R ever halts. This technique is known as ‘Defender’s
Forcing’ [14,18].

The construction is motivated by a construction in [17]. For convenience con-
stant definitions are used instead of μ-operations. Since localization operator
must not appear underneath any μ-operations, no confusion will arise. Two
slightly modified copies are given directly instead of describing the encoding in
advance.

Let R be an instance of HaltingMinskyMachine whose instruction set is
{(1 : I1), (2 : I2), . . . , (n− 1 : In−1), (n : halt)}. Without using the localization
operator the processes {Pi}ni=1 and {Qi}ni=1 are defined as follows:

– Pi
def
= incj .Pi+1 and Qi

def
= incj .Qi+1 if the i-th instruction is (i : Succ(rj)).

– If the i-th instruction is (i : Decjump(rj , s)), then let

Pi
def
= decj .d.Pi+1 + zeroj .(tt.z.Ps + ff.z.Qs),

Qi
def
= decj .d.Qi+1 + zeroj .(tt.z.Qs + ff.z.Ps).

– Pn
def
= halt.0 and Qn

def
= 0 for the n-th instruction (n : halt).

The processes {Pi}ni=1 and {Qi}ni=1 are two families of slightly different processes
that interpret the instructions of R. Special attention should be paid to the
gadget ff.z.Qs (or ff.z.Ps) in the defining equation of Pi (or Qi) for instruction
(i : Decjump(rj, s)). This gadget is designed to ‘force’ the attacker to stick to
the faithful moves. Also notice that the only asymmetry between Pi’s and Qi’s
is that Pn can perform a special action halt whereas Qn cannot.

The processes PseudoCounterj(k), for j ∈ {1, 2}, introduced below are used
to partially model the registers of R.

PseudoCounterj(k)
def
= Cj | Cj | . . . | Cj︸ ︷︷ ︸

k

| Oj ,

where Oj and Cj are defined as follows without using the localization operation:

Oj
def
= incj .(Cj | Oj) + zeroj .tt.Oj ,

Cj
def
= decj .0 + zeroj .ff.Cj .

The process PseudoCounterj’s are the weak forms of the counter, for they lack
the ability to zero-test — they can make a ‘zero’ move while the actual value of
the counters are positive. However PseudoCounterj’s are good enough for the
purpose of deriving the undecidability results we want.

www.manaraa.com

Decidability of Behavioral Equivalences 291

Finally every configuration of R is modeled by the following two slightly dif-
ferent processes.

ConfigP (i; c1, c2)
def
= (ĩnc)(d̃ec)(z̃ero)(tt)(ff)

(Pi |PseudoCounter1(c1) |PseudoCounter2(c2)),

ConfigQ(i; c1, c2)
def
= (ĩnc)(d̃ec)(z̃ero)(tt)(ff)

(Qi |PseudoCounter1(c1) |PseudoCounter2(c2)).

The correctness of the above encoding is guaranteed by Lemma 2, Lemma 3,
and Lemma 4, which eventually lead to Theorem 1.

Lemma 2. Let (i; c1, c2) be a configuration of R and (i : Succ(rj)) be the i-th
instruction. Then there is a unique continuation of the bisimulation game from
the pair of processes ConfigP (i; c1, c2) and ConfigQ(i; c1, c2) such that, after
one round, the players reach the pair ConfigP (i; c

′
1, c

′
2) and ConfigQ(i; c

′
1, c

′
2)

where c′j = cj + 1 and c′3−j = c3−j.

Lemma 3. Let (i; c1, c2) be a configuration of R and (i : Decjump(rj , s)) be
the i-th instruction. Assume that a bisimulation game is played from the pair
ConfigP (i; c1, c2) and ConfigQ(i; c1, c2). The followings hold:

(a) If cj = 0, then there is a unique continuation of the game such that after three
rounds, the players reach the pair ConfigP (s; c1, c2) and ConfigQ(s; c1, c2).

(b) If cj > 0 and the attacker chooses the τ action induced by the synchronization
via channel decj, then the defender has a way to continue the game such
that, after two rounds, ConfigP (i; c

′
1, c

′
2) and ConfigQ(i; c

′
1, c

′
2) are reached,

where c′j = cj−1 and c′3−j = c3−j. If the defender does not play in this way,
there is a way for the attacker to win the game.

(c) If cj > 0 and the attacker chooses the τ action induced by the synchronization
via channel zeroj, then there is a way for the defender to win the game.

Lemma 4. The execution of R from the configuration (1; 0, 0) terminates if and
only if ConfigP (1; 0, 0) �∼ ConfigQ(1; 0, 0).

Theorem 1. Both CCSμ• ∼CCSμ• and CCSμ∼CCSμ are Π0
1 -complete.

3.2 Undecidability of CCS!
• ∼CCS!

•

The result established in Section 3.1 does not immediately imply the same result
for CCS!/CCS!•. A well known fact is that recursion can be turned into replica-
tion [26,11] by the encoding � � whose nontrivial part is given by �Xi� = ai.0 and
�μXi.E� = (ai)(ai | !ai.�E�), where names ai’s are fresh. However this encoding
does not give rise to a strong bisimulation. Another problem is that an encoding
from CCSμ to CCS! would not always produce an encoding from CCSμ• to CCS!•
automatically since they introduce additional local names.

Undecidability of CCS!•∼CCS!• does not rely on the existence of such an
encoding. The basic idea and the construction in Section 3.1 can be repeated

www.manaraa.com

292 C. He, Y. Fu, and H. Fu

with subtle modifications. The intuition of the next encoding is to interpret every
instruction of a Minsky Machine R by a process of the form !addr.opr, where addr
should be understood as the address of the instruction and opr the operation of
the instruction. The difficulty is to guarantee that only a finite number of local
channels are necessary. In the following definition 2n extra static local channels
{instiP , instiQ}ni=1 are used.

– If the i-th instruction is (i : Succ(rj)), let

Pi
def
= !instiP .incj .inst

i+1
P , Qi

def
= !instiQ.incj .inst

i+1
Q .

– If the i-th instruction is (i : Decjump(rj , s)), let

Pi
def
= !instiP .(decj .d.inst

i+1
P + zeroj .(tt.τ.τ.z.inst

s
P + ff.ack.z.instsQ)),

Qi
def
= !instiQ.(decj .d.inst

i+1
Q + zeroj .(tt.τ.τ.z.inst

s
Q + ff.ack.z.instsP)).

– For the n-th instruction (n : halt), let

Pn
def
= !instnP .halt.0, Qn

def
= !instnQ.0.

In the following modification of PseudoCounterj(k), {mj}2j=1 and ack are the
only extra local channels introduced.

PseudoCounterj(k)
def
= Cj | Cj | . . . | Cj︸ ︷︷ ︸

k

| Oj | !mj .ack.Cj ,

where Oj
def
= !(incj .Cj + zeroj .tt), and Cj

def
= decj + zeroj .ff.mj . When zeroj is

triggered on some Cj , channel mj is used to require a new copy of Cj from
the resource !mj .ack.Cj , and after that, the channel ack ais used to inform the
process that triggers the action zeroj . Such treatment will make the whole system
sequential. As a side-effect it will take two more computation steps when the zero-
testing is unfaithfully chosen by the attacker, and for the defender, two extra
τ ’s are introduced into the definition of Pi and Qi. The configuration (i; c1, c2)
of R is interpreted by the following two processes:

Config!P (i; c1, c2)
def
= (ĩnst)(ĩnc)(d̃ec)(z̃ero)(m̃)(tt)(ff)(ack)⎛⎝instiP |

n∏
i=1

Pi |
n∏

i=1

Qi |
2∏

j=1

PseudoCounterj(cj)

⎞⎠ ,
Config!Q(i; c1, c2)

def
= (ĩnst)(ĩnc)(d̃ec)(z̃ero)(m̃)(tt)(ff)(ack)⎛⎝instiQ |

n∏
i=1

Pi |
n∏

i=1

Qi |
2∏

j=1

PseudoCounterj(cj)

⎞⎠ .
Using the same argument as in Section 3.1 we can prove the following.

Theorem 2. Both CCS!•∼CCS!• and CCS!∼CCS! are Π0
1 -complete.

www.manaraa.com

Decidability of Behavioral Equivalences 293

4 Strong (Bi)similarity on Finite State Processes

We investigate in this section the decidability of strong bisimilarity/similarity
between a CCS!/CCSμ process and a finite state process.

4.1 Undecidability of CCS! ∼FS

The general problem CCS!∼FS is undecidable. This result depends on the con-
struction of Busi et al in Section 3 of [5], where Minsky Machines are encoded
by CCS! processes in a nondeterministic fashion. Using this encoding, one can
show that if a Minsky Machine R does not halt, the encoding of R is a CCS!

process strongly bisimilar to !τ , which cannot perform any visible actions and is
divergent in every computation branch. If R does halt, the encoding of R has at
least one divergent computation branch. This fact leads to Theorem 3.

Theorem 3. The strong bisimilarity between a process P ∈ PCCS! (or P ∈
PCCSμ) and a fixed finite state process F ∈ PFS is Π0

1 -complete.

It is worth noting that Theorem 1 of [5] confirms that the Minsky Machine R

halts if and only if R is interpreted as a CCS! process P satisfying P ≈ τ.P+halt,
which establishes the Σ0

1-hardness of the weak bisimilarity checking problem of
CCS!. An interesting question is how to establish the Π0

1 -hardness of CCS
!≈FS.

It is widely believed that checking weak bisimilarity is harder than checking the
strong bisimilarity. However the above construction does not immediately offer
an answer to the latter problem.

4.2 Decidability of CCS!
• ∼FS

Although both CCS!∼FS and CCSμ∼FS are undecidable in the general case,
their restricted versions, CCS!•∼FS and CCSμ• ∼FS, turn out to be decidable.
These results are motivated by the following observations. Suppose P ∈ PCCS!•
or P ∈ PCCSμ

• . We may assume that P is of the form (ã)
∏

i∈I Pi in which ã are
all the local names of P and every Pi is localization free and is not a composition.
We call (ã)

∏
i∈I Pi a concurrent normal form of P , and every Pi a concurrent

component of P . The key opoint is that no local names can be produced during
the evolution of P , and the number of the possible concurrent components of all
derivatives of P must be finite.

Based on the above observations, a strongly bisimilar encoding from CCS!•
(or CCSμ•) to the Labeled Petri Net is constructed. With the help of the results
of Jančar et al. [16], we know that the same problem for the Labeled Petri Net
is decidable. Hence the decidability of CCS!

•∼FS and CCSμ• ∼FS.

Definition 1. A Petri Net is a tuple N = (Q, T, F,M0) and a Labeled Petri
Net is a tuple N = (Q, T, F, L,M0), where Q and T are finite disjoint sets of
places and transitions respectively, F : (Q×T)∪ (T ×Q)→ N is a flow function
and L : T → A is a labeling. M0 is the initial marking, where a marking M is
a function Q→ N assigning the number of tokens to each place.

www.manaraa.com

294 C. He, Y. Fu, and H. Fu

A transition t ∈ T is enabled at a marking M , denoted by M
t−→, if M(p) ≥

F (p, t) for every p ∈ Q. A transition t enabled at M may fire yielding the

marking M ′, denoted by M
t−→M ′, where M ′(p) =M(p)−F (p, t)+F (t, p) for

all p ∈ Q. For each λ ∈ A, we write M
λ−→, respectively M

λ−→ M ′ to mean

that M
t−→, respectively M

t−→M ′ for some t with L(t) = λ.

In the above definition A is the set of the action labels. A Labeled Petri Net
N can be viewed as a labeled transition system (M,A,−→) with M being
the markings of N . Strong bisimilarity is defined accordingly. Suppose Q =
{S1, S2, . . . , Sn} is the finite set of places. Labeled transition rules of the form

Sm1
1 Sm2

2 . . . Smn
n

λ−→ S
m′

1
1 S

m′
2

2 . . . S
m′

n
n are used to indicate that there is a tran-

sition t whose label is λ and the flow function for t is defined by F (Si, t) =
mi and F (t, Si) = m′

i for every i = 1, . . . , n. A marking M is denoted by

S
M(S1)
1 S

M(S2)
2 . . . S

M(Sn)
n , which can be viewed as a multiset over Q. Thus N

is specified by (Q,A,Tr,M0), where Tr is the set of the labeled transition rules.
The next lemma is due to Jančar and Moller [16].

Lemma 5. The strong bisimilarity between a marking M0 of a Labeled Petri
Net N and a finite state process F ∈ PFS is decidable.

To describe the encoding from CCS!• to the Labeled Petri Net, we need the
following definitions and lemma, borrowed from [10].

Definition 2. Suppose the PCCS! process P does not contain any local names.
The concurrent subprocesses of P , notation Csub(P), is defined inductively by

Csub(0)
def
= ∅,

Csub(P ′ |P ′′)
def
= Csub(P ′) ∪Csub(P ′′),

Csub(

n∑
i=1

λi.Pi)
def
= {

n∑
i=1

λi.Pi} ∪
⋃
i∈I

CSub(Pi),

Csub(!P ′)
def
= {!P ′} ∪ Csub(P ′).

Clearly if P ≡ (a)P ′ is in concurrent normal form, then Csub(P)
def
= Csub(P ′).

Lemma 6. For every process P of CCS!• in concurrent normal form, Csub(P)
is finite, and for every P ′ ∈ Drv(P), Csub(P ′) ⊆ Csub(P).

By letting Csub(μX.E)
def
= {μX.E} ∪ Csub(E{μX.E/X}), the counterpart of

Lemma 6 for CCSμ
• can be established. Now an encoding from the concurrent

normal forms of CCS!• or CCSμ• to the Labeled Petri Net is given in the proof of
Lemma 7.

Lemma 7. There is an algorithm such that, given process P ∈ PCCS!• (or P ∈
PCCSμ

•) in concurrent normal form, it outputs a Labeled Petri Net NP with the
same set of the action labels and P ∼ NP .

www.manaraa.com

Decidability of Behavioral Equivalences 295

Proof. Let Csub(P) = {Ci | i ∈ I} and P = (ã)(
∏

i∈I C
ni

i). The Labeled
Petri Net NP = (Q,A,−→,M0) is defined as follows. The set of the places is

Q
def
= {[Ci] | i ∈ I} and the initial marking is M0

def
=

∏
i∈I [Ci]

ni . The transition
rules are defined inductively:

– If Ci
λ−→

∏
j∈I C

nj

j , then [Ci]
λ−→

∏
j∈I [Cj]

nj is a rule provided that λ �∈ m̃.

– If Ci1
l−→

∏
j∈I C

mj

j and Ci2
l−→

∏
j∈I C

nj

j , then [Ci1][Ci2]
τ−→∏

j∈I [Cj]
mj+nj is a rule.

The remaining work is to confirm that

{((ã)(
∏
i∈I

Cni

i),
∏
i∈I

[Ci]
ni) | ni ≥ 0 for i ∈ I)}

is a bisimulation. �	

The combination of Lemma 7 and Lemma 5 produces the following.

Theorem 4. The strong bisimilarity between a process P ∈ PCCS!• (or P ∈
PCCSμ

•) and a finite state process F ∈ PFS is decidable.

4.3 Decidability Results of Simulation Preorder

This part focuses on the problems L
FS and FS
L. In the case that L is
CCS!• or CCSμ• , the decidability result can be obtained via the same encoding
provided in Section 4.2 with the help of the results already known for the Labeled
Petri Net stated in Theorem 3.2 and Theorem 3.5 of [16].

Theorem 5. FS
CCS!•, FS
CCSμ• , CCS
!
•
FS, CCSμ•
FS are decidable.

Now let’s turn to CCS! or CCSμ. It has been suggested that the similarity
checking is computational harder than the bisimilarity checking. This point is
supported by two general proof methods applied to many process classes in a
paper by Kučera and Mayr [19]. These two proof methods however cannot be
used to show similar results for CCS! or CCSμ. As a matter of fact we will prove
that FS
CCS! is decidable, despite of the fact that FS∼CCS! is undecidable
by Theorem 3.

Our proof makes use of simulation bases. A simulation base is a finite subset
of
 consisting only of ‘crucial’ similar pairs from which a possibly infinite sim-
ulation relation can be produced algorithmically. Similarity will be decidable if
simulation bases can be effectively constructed. For more on this technique, the
reader is referred to [3,17,18].

In order to get a simulation base, we shall make good use of the well-structured
transition system [8] of PCCS! , which was first pointed out by Busi et al in [4].
Here we follow the definition from [10] with slight amendment.

Definition 3. A well quasi order (X,≤) is a preorder such that, for every
infinite sequence x0, x1, x2, . . . in X, there exist indexes i < j such that xi ≤ xj.

www.manaraa.com

296 C. He, Y. Fu, and H. Fu

Definition 4. The structural expansion � on the CCS! processes is defined
inductively as follows:

– P � Q whenever Q ≡ P |R for some R;
– (a)P � (a)Q whenever P � Q;
– P � Q whenever P ≡ P1 |P2, Q ≡ Q1 |Q2, P1 � Q1 and P2 � Q2.

Notice that Definition 4 works up to structural congruence. Intuitively P � Q
means that Q contains at least as many possible individual processes running
concurrently as P . The relation � is transitive. Due to the syntactical nature
of the definition, � is decidable. The next two technical lemmas, due to Busi
et al, are crucial to the effective production of the simulation bases. The proof
of Lemma 8 is straightforward. For a detailed proof of Lemma 9, one may con-
sult [10].

Lemma 8 (Compatibility Lemma). Suppose that P ,Q are CCS! processes.

If P � Q and P
λ−→ P ′, then Q′ exists such that Q

λ−→ Q′ and P ′ � Q′.

Lemma 9 (Expansion Lemma). Let P ∈ PCCS! , then (Drv(P),�) is a well
quasi order.

Using the techniques and lemmas discussed above, one can infer the following
main result of the section.

Theorem 6. FS
 CCS! is decidable.

5 Concluding Remark

Summary. We have studied several decidability and undecidability issues on
the bisimilarity and similarity checking problems of some subcalculi of CCS.
We have concentrated on the question of how the solutions are affected when
the capability of producing and manipulating local channels becomes weaker.
An instance is identified that similarity checking is decidable while bisimilarity
checking is not. Fig. 4 summarizes the status quo of our understanding of the
decidability property. These results offer a different angle to look at the relative
expressiveness of the subcalculi of CCS.

Related Work. The relative expressiveness of CCS is studied in [4,5,11,6,10,2].
It is proved in [5,11] that CCS! and CCSμ are less expressive than CCSPdef . Two
problems are left open in [11,2]. Both are answered in [10]. One answer is given
by an encoding from CCSμ to CCS! that is codivergent and branching bisimilar.
The other is by an encoding from CCSμ to itself with only guarded recursion. A
more formal approach to the expressiveness study is proposed in [9]. In [15] the
bisimilarity checking problem between the infinite-state processes and the finite-
state ones is reduced to the model checking problem of reachability of Hennessy-
Milner property. A recent survey on the decidability and complexity results of
bisimilarity checking for the processes defined in Process Rewrite Systems [21]
is given in [27]. A surprising result is pointed out in [20] that strong bisimilarity

www.manaraa.com

Decidability of Behavioral Equivalences 297

L L∼L L∼FS FS�L L�FS

CCS!
◦ � [7] � [7] � �

CCSμ
◦ � [7] � [7] � �

CCS!
• × (Th.2) � (Th.4) � (Th.5) � (Th.5)

CCSμ
• × (Th.1) � (Th.4) � (Th.5) � (Th.5)

CCS! × × (Th.3) � (Th.6) ?

CCSμ × × (Th.3) ? ?

CCSPdef × [4,11] × [4,11] × [4,11] × [4,11]

“∼”: strong bisimilarity
“�”: strong similarity

“�”: known decidable
“×”: known undecidable
“?”: unknown

Fig. 4. Summary of the Results

is decidable for a higher-order calculus. The Petri Net semantics is proposed
in [12] for CCSμ◦ with guarded recursion. In [2] a similar encoding of CCS!◦ into
the Petri Nets is presented. Our results assert the nonexistence of reasonable
encodings from CCS!/CCSμ to the Labeled Petri Net. The interplay between
CCS! and the Chomsky Hierarchy are studied in [1].

Future Work. Recently we have attempted to set up an expansion order for
CCSμ, which we hope would help us prove the decidability of FS
 CCSμ. The
problem CCS!
 FS is interesting. It appears undecidable, but nothing seems
to indicate that a positive answer is unlikely. Finally notice that the number of
the static local channels used to show Theorem 1 is bounded, whereas we have
not got such a bound for Theorem 2. This may suggest that CCSμ• cannot be
encoded into CCS!•.

Acknowledgements. The authors are indebted to all the anonymous referees
for their detailed reviews on the previous version of the paper. Their criticisms,
questions and suggestions have led to a significant improvement of the paper.

References

1. Aranda, J., Di Giusto, C., Nielsen, M., Valencia, F.: CCS with Replication in
the Chomsky Hierarchy: The Expressive Power of Divergence. In: Shao, Z. (ed.)
APLAS 2007. LNCS, vol. 4807, pp. 383–398. Springer, Heidelberg (2007)

2. Aranda, J., Valencia, F.D., Versari, C.: On the Expressive Power of Restriction and
Priorities in CCS with Replication. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS,
vol. 5504, pp. 242–256. Springer, Heidelberg (2009)

3. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures.
In: Handbook of Process Algebra, pp. 545–623 (2001)

4. Busi, N., Gabbrielli, M., Zavattaro, G.: Replication vs. Recursive Definitions in
Channel Based Calculi. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger,
G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 133–144. Springer, Heidelberg (2003)

5. Busi, N., Gabbrielli, M., Tennenholtz, M.: Comparing Recursion, Replication, and
Iteration in Process Calculi. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142, pp. 307–319. Springer, Heidelberg (2004)

6. Busi, N., Gabbrielli, M., Zavattaro, G.: On the expressive power of recursion,
replication and iteration in process calculi. Mathematical Structures in Computer
Science 19(6), 1191–1222 (2009)

www.manaraa.com

298 C. He, Y. Fu, and H. Fu

7. Christensen, S., Hirshfeld, Y., Moller, F.: Decidable subsets of CCS. Comput.
J. 37(4), 233–242 (1994)

8. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere? Theor.
Comput. Sci. 256(1-2), 63–92 (2001)

9. Fu, Y.: Theory of interaction (2010), http://basics.sjtu.edu.cn/~yuxi/
10. Fu, Y., Lu, H.: On the expressiveness of interaction. Theor. Comput. Sci. 411

(11-13), 1387–1451 (2010)
11. Giambiagi, P., Schneider, G., Valencia, F.: On the Expressiveness of Infinite Be-

havior and Name Scoping in Process Calculi. In: Walukiewicz, I. (ed.) FOSSACS
2004. LNCS, vol. 2987, pp. 226–240. Springer, Heidelberg (2004)

12. Goltz, U.: CCS and Petri Nets. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469,
pp. 334–357. Springer, Heidelberg (1990)

13. He, C., Fu, Y., Fu, H.: Decidability of behavioural equivalences in process calculi
with name scoping (2010), http://basics.sjtu.edu.cn/~chaodong/

14. Jancar, P., Srba, J.: Undecidability of bisimilarity by defender’s forcing. J.
ACM 55(1) (2008)

15. Jančar, P., Kučera, A., Mayr, R.: Deciding bisimulation-like equivalences with
finite-state processes. Theor. Comput. Sci. 258(1-2), 409–433 (2001)

16. Jančar, P., Moller, F.: Checking Regular Properties of Petri Nets. In: Lee, I.,
Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 348–362. Springer,
Heidelberg (1995)

17. Jančar, P., Moller, F.: Techniques for Decidability and Undecidability of Bisimi-
larity. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp.
30–45. Springer, Heidelberg (1999)

18. Kučera, A., Jancar, P.: Equivalence-checking on infinite-state systems: Techniques
and results. TPLP 6(3), 227–264 (2006)

19. Kučera, A., Mayr, R.: Why is simulation harder than bisimulation? In: Brim, L.,
Jančar, P., Křet́ınský, M., Kučera, A. (eds.) CONCUR 2002. LNCS, vol. 2421,
pp. 594–609. Springer, Heidelberg (2002)

20. Lanese, I., Pérez, J.A., Sangiorgi, D., Schmitt, A.: On the expressiveness and de-
cidability of higher-order process calculi. In: LICS, pp. 145–155 (2008)

21. Mayr, R.: Process rewrite systems. Inf. Comput. 156(1-2), 264–286 (2000)
22. Milner, R.: Communication and concurrency. Prentice-Hall (1989)
23. Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge

University Press (1999)
24. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Inf. Com-

put. 100(1), 1–77 (1992)
25. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall (1967)
26. Sangiorgi, D., Walker, D.: PI-Calculus: A Theory of Mobile Processes. Cambridge

University Press (2001)
27. Srba, J.: Roadmap of Infinite results. Formal Models and Semantics, vol. 2. World

Scientific Publishing Co. (2004)
28. Taubner, D.A.: Finite Representations of CCS and TCSP Programs by Automata

and Petri Nets. LNCS, vol. 369. Springer, Heidelberg (1989)

http://basics.sjtu.edu.cn/~yuxi/
http://basics.sjtu.edu.cn/~chaodong/

www.manaraa.com

Rewriting Approximations for Properties

Verification over CCS Specifications

Roméo Courbis

INRIA/CASSIS
LIFC/University of Franche-Comté

16 route de Gray
F-25030 Besançon Cedex

rcourbis@lifc.univ-fcomte.fr

Abstract. This paper presents a way to verify CCS (without renaming)
specifications using tree regular model checking. From a term rewriting
system and a tree automaton representing the semantics of CCS and
equations of a CCS specification to analyse, an over-approximation of the
set of reachable terms is computed from an initial configuration. This set,
in the framework of CCS, represents an over-approximation of all states
(modulo bisimulation) and action sequences the CCS specification can
reach. The approach described in this paper can be fully automated.
It is illustrated with the Alternating Bit Protocol and with hardware
components specifications.

1 Introduction

Model-checking techniques [20, 21] are commonplace in computer aided verifica-
tion. Model checking refers to the following problem: given a desired property,
expressed as a temporal logic formula ϕ, and a structure M with initial state s,
decide if M, s |= ϕ. The use of model-checking techniques and tools is however
limited to systems whose state space can be finitely and concisely represented.

Recently, reachability analysis turned out to be a very efficient verification
technique for proving properties on infinite systems modeled by term rewriting
systems (TRSs for short). In the rewriting theory, the reachability problem is
the following: given a TRS R and two terms s and t, can we decide whether
R∗({s}) ∩ {t} = ∅ or not? This problem, which can easily be solved on strongly
terminating TRSs, is undecidable on non terminating TRSs. However, on the
one hand, there exist several syntactic classes of TRSs for which this problem
becomes decidable [13, 18, 26]. On the other hand, in addition to classical proof
tools of rewriting, given a set E ⊆ T (F) of initial terms, provided that s ∈ E,
one can prove R∗({s})∩{t} = ∅ by using over-approximations of R∗(E) [13, 19]
and proving that t does not belong to these approximations.

Motivations. Recently, some of the most successful experiments using reacha-
bility analysis were done on cryptographic protocols, [6, 16], and on Java byte
code programs [5]. For example, Java MIDLet applications security properties

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 299–315, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

300 R. Courbis

are verified through R∗(E) over-approximations. To this end, following works on
CEGAR [8], an over-approximations refinement depending on a security prop-
erty to be verified is developed in [4]. As TRSs and tree automata are powerful
tools to express specifications, it is possible to perform reachability analysis on
those. This paper fits in line with this context by adapting reachability analysis
to verification of CCS (without renaming) specifications. Note that the reacha-
bility problem for this fragment of CCS is undecidable [7].

Contributions. This paper address the following problem : Is it easy to adapt
approximation rewriting to the verification of infinite state systems specified in
CCS ? The solution presented in this paper consists in a translation of a CCS
specification into a TRS and a tree automaton. Then it is possible to verify prop-
erties using reachability analysis. This solution is illustrated with the Alternating
Bit Protocol and with specifications of hardware components.

Structure of the Paper. This paper is organised as follows. Section 2 intro-
duces basic definitions of terms, TRSs, tree automata completion and CCS. Then
Section 3 explains how to translate a CCS specification into a TRS and a tree
automaton, and then how to verify properties on sequences of actions. Section 4
and Section 5 show applications of the technique presented in Section 3. Finally,
Section 6 presents related works and the conclusion.

2 Preliminaries

Comprehensive surveys can be found in [1, 12] for TRSs, in [10, 17] for tree
automata and tree language theory, and in [22] for CCS.

2.1 Terms and TRSs

Let F be a finite set of symbols, associated with an arity function ar : F → N,
and let X be a countable set of variables. T (F ,X) denotes the set of terms,
and T (F) denotes the set of ground terms (terms without variables). The set of
variables of a term t is denoted by Var(t). A substitution is a function σ from X
into T (F ,X), which can be extended uniquely to an endomorphism of T (F ,X).
A position p for a term t is a word over N. The empty sequence ε denotes the
top-most position. The set Pos(t) of positions of a term t is inductively defined
by Pos(t) = {ε} if t ∈ X and by Pos(f(t1, . . . , tn)) = {ε} ∪ {i.p | 1 ≤ i ≤
n and p ∈ Pos(ti)} otherwise. If p ∈ Pos(t), then t|p denotes the subterm of t
at position p and t[s]p denotes the term obtained by replacement of the subterm
t|p at position p by the term s. We also denote by t(p) the symbol occurring
in t at position p. Given a term t ∈ T (F ,X), we denote PosA(t) ⊆ Pos(t)
the set of positions of t such that PosA(t) = {p ∈ Pos(t) | t(p) ∈ A}. Thus
PosF(t) is the set of functional positions of t. A TRS R is a set of rewrite rules
l → r, where l, r ∈ T (F ,X) and l �∈ X . A rewrite rule l → r is left-linear (resp.
right-linear) if each variable of l (resp. r) occurs only once within l (resp. r).
A TRS R is left-linear (resp. right-linear) if every rewrite rule l → r of R is

www.manaraa.com

Rewriting Approximations for Properties Verification 301

left-linear (resp. right-linear). A TRS R is linear if it is right and left-linear.
The TRS R induces a rewriting relation→R on terms whose reflexive transitive
closure is written →�

R. The set of R-descendants of a set of ground terms E is
R∗(E) = {t ∈ T (F) | ∃s ∈ E s.t. s→�

R t}.

2.2 Tree Automata Completion

Note that R∗(E) is possibly infinite: R may not terminate and/or E may be
infinite. The set R∗(E) is generally not computable [17]. However, it is possible
to over-approximate it [13] using tree automata, i.e. a finite representation of
infinite (regular) sets of terms. We next define tree automata.

Let Q be a finite set of symbols, of arity 0, called states such that Q∩F = ∅.
T (F ∪Q) is called the set of configurations.

Definition 1 (Transition and normalised transition). A transition is a
rewrite rule c → q, where c ∈ T (F ∪Q) is a configuration and q ∈ Q. A
normalised transition is a transition c → q where c = f(q1, . . . , qn), f ∈ F ,
ar(f) = n, and q1, . . . , qn ∈ Q.

Definition 2 (Bottom-up non-deterministic finite tree automaton). A
bottom-up non-deterministic finite tree automaton (tree automaton for short) is
a quadruple A = (F ,Q,Qf , Δ), Qf ⊆ Q and Δ is a finite set of normalised
transitions.

The rewriting relation on T (F ∪Q) induced by the transition set Δ of A is
denoted →Δ. When Δ is clear from the context, →Δ is also written →A.

Definition 3 (Recognised language). The tree language recognised by A in
a state q is L(A, q) = {t ∈ T (F) | t →�

A q}. The language recognised by A is
L(A) =

⋃
q∈Qf

L(A, q). A tree language is regular if and only if it is recognised
by a tree automaton.

Let us now recall how tree automata and TRSs can be used for term reach-
ability analysis. Given a tree automaton A and a TRS R, the tree automata
completion algorithm proposed in [13] computes a tree automaton Ak

R such that
L(Ak

R) = R∗(L(A)) when it is possible (for the classes of TRSs where an exact
computation is possible, see [13]), and such that L(Ak

R) ⊇ R∗(L(A)) otherwise.
The tree automata completion works as follows. From A = A0

R the completion
builds a sequenceA0

R,A1
R . . .Ak

R of automata such that if s ∈ L(Ai
R) and s→R t

then t ∈ L(Ai+1
R). If there is a fix-point automaton Ak

R such that R∗(L(Ak
R)) =

L(Ak
R), then L(Ak

R) = R∗(L(A0
R)) (or L(Ak

R) ⊇ R∗(L(A)) if R is in no class
of [13]). To build Ai+1

R from Ai
R, a completion step is achieved. It consists of

finding critical pairs between→R and→Ai
R

. To define the notion of critical pair,
the substitution definition is extended to terms in T (F ∪Q). For a substitution
σ : X 	→ Q and a rule l → r ∈ R such that Var(r) ⊆ Var(l), if there exists
q ∈ Q satisfying lσ →∗

Ai
R

q then lσ →∗
Ai

R
q and lσ →R rσ is a critical pair. Note

that since R and Ai
R are finite, there is only a finite number of critical pairs.

www.manaraa.com

302 R. Courbis

Thus, for every critical pair detected between R and Ai
R such that rσ �→∗

Ai
R

q,

the tree automaton Ai+1
R is constructed by adding a new transition rσ → q to

Ai
R. Consequently, Ai+1

R recognises rσ in q, i.e. rσ →Ai+1
R

q.

∗

lσ

Ai
R

R
rσ

q

∗

A
i+1

R

However, the transition rσ → q is not necessarily a normalized transition of
the form f(q1, . . . , qn)→ q and so it has to be normalized first. For example, to
normalize a transition of the form f(g(a), h(q′))→ q, we need to find some states
q1, q2, q3 and replace the previous transition by a set of normalized transitions:
{a→ q1, g(q1)→ q2, h(q′)→ q3, f(q2, q3)→ q}.

If q1, q2, q3 are new states, then adding the transition itself or its normalized
form does not make any difference. On the opposite, if we identify q1 with q2,
the normalized form becomes {a → q1, g(q1) → q1, h(q′) → q3, f(q1, q3) → q}.
This set of normalized transitions represents the regular set of non-normalized
transitions of the form f(g∗(a), h(q′))→ q which contains the transition we want
to add but also many others. Hence, this is an over-approximation. We could
have made an even more drastic approximation by identifying q1, q2, q3 with q,
for instance.

When always using a new states to normalize the transitions, completion
is as precise as possible. However, without approximation, completion is likely
not to terminate (because of general undecidability results [17]). To enforce
termination, and produce an over-approximation, the completion algorithm is
parametrized by a set N of approximation rules. When the set N is used during
completion to normalize transitions, the obtained tree automata are denoted
by A1

N,R, . . . ,Ak
N,R. Each such rule describes a context in which a list of rules

can be used to normalize a term. For all s, l1, . . . , ln ∈ T (F ∪Q,X) and for all
x, x1, . . . , xn ∈ Q ∪ X , the general form for an approximation rule is:
[s → x] → [l1 → x1, . . . , ln → xn]. The expression [s → x] is a pattern to be
matched with the new transition t → q′ obtained by completion. The expres-
sion [l1 → x1, . . . , ln → xn] is a set of rules used to normalize t. to normalize
a transition of the form t → q′, we match s with t and x with q′, obtain a
substitution σ from the matching and then we normalize t with the rewrite sys-
tem {l1σ → x1σ, . . . , lnσ → xnσ}. Furthermore, if ∀i = 1 . . . n : xi ∈ Q or
xi ∈ Var(li) ∪ Var(s) ∪ {x} then x1σ, . . . , xnσ are necessarily states. If a transi-
tion cannot be fully normalized using approximation rules N , normalization is
finished using some new states.

The main property of the tree automata completion algorithm is that, what-
ever the state labels used to normalize the new transitions, if completion termi-
nates then it produces an over-approximation of reachable terms [13]. In other
words, approximation safety does not depend on the set of approximation rules
used. Since the role of approximation rules is only to select particular states for
normalizing transitions, the safety theorem of [13] can be reformulated in the
following way.

www.manaraa.com

Rewriting Approximations for Properties Verification 303

Theorem 1. Let A be a tree automaton, N be a set of approximation rules and
R be a left-linear TRS such that for every l → r ∈ R, Var(r) ⊆ Var(l). If
completion terminates on Ak

N,R then

L(Ak
N,R) ⊇ R∗(L(A))

Here is a simple example illustrating completion and the use of approximation
rules when the language R∗(E) is not regular.

Example 1. Let R = {g(x, y) → g(f(x), f(y))} and let A be a tree automaton
such that Qf = {qf} and Δ = {a→ qa, g(qa, qa)→ qf}. Hence L(A) = {g(a, a)}
and R∗(L(A)) = {g(fn(a), fn(a)) | n ≥ 0}. Let N = [g(f(x), f(y)) → z] →
[f(x) → q1 f(y) → q1]. During the first completion step, we find a criti-
cal pair g(qa, qa) →R g(f(qa), f(qa)) and g(qa, qa) →∗

A qf . We thus have to
add the transition g(f(qa), f(qa)) → qf to A. To normalize this transition,
we match g(f(x), f(y)) with g(f(qa), f(qa)) and match z with qf and obtain
σ = {x 	→ qa, y 	→ qa, z 	→ qf}. Applying σ to [f(x) → q1f(y) → q1] gives
[f(qa) → q1f(qa) → q1]. This last system is used to normalize the transition
g(f(qa), f(qa)) → qf into the set {g(q1, q1) → qf , f(qa) → q1} which is added
to A to obtain A1

N,R. The completion process continues for another step and
ends on A2

N,R whose set of transition is {a → qa, g(qa, qa) → qf , g(q1, q1) →
qf , f(qa) → q1, f(q1) → q1}. We have L(A2

N,R) = {g(fn(a), fm(a)) | n, m ≥ 0}
which is an over-approximation of R∗(L(A)).

2.3 The Calculus of Communicating Systems

Syntax. Let A = {a, b, c, . . .} be the set of names and Ā = {ā, b̄, c̄, . . .} be the
set of co-names. Let �L = A ∪ Ā be a set of labels, and let τ be the invisible
action such that τ �∈ �L. Let Act = �L ∪ {τ} be the set of actions. Let P be a
set of process names, and let 0 ∈ P be the inactive process. Let E be the set of
restricted CCS expressions defined according to the following syntax:
E, E1, E2 := α.E | E1 + E2 | E1 ‖ E2 | E \ � | 0 | P
where α, � ∈ Act, E, E1, E2 ∈ E and P ∈ P . Process names P ∈ P are defined
such that for all P and E ∈ E , one has : P

def
= E. The set Action(E) of ac-

tions is inductively defined by Action(α.E) = {α} ∪ Action(E), Action(0) = ∅,
Action(P) = Action(E) (with P

def
= E) and Action(E1 + E2) = Action(E1 ‖

E2) = Action(E1)∪Action(E2). The set of actions ResAction(E) is inductively
defined by: ResAction(E \ �) = ResAction(E) ∪ {�} and ResAction(α.E) =

ResAction(E), ResAction(0) = ∅, ResAction(P) = ResAction(E) (with P
def
=

E) and ResAction(E1 + E2) = ResAction(E1 ‖ E2) = ResAction(E1)
∪ResAction(E2). The set Subterm(E) of CCS expressions is inductively defined
by Subterm(α.E) = {α.E} ∪ Subterm(E), Subterm(0) = ∅, Subterm(P) =

Subterm(E) (with P
def
= E), Subterm(E1 + E2) = {E1 + E2} ∪ Subterm(E1) ∪

Subterm(E2) and Subterm(E1 ‖ E2) = {E1 ‖ E2}∪Subterm(E1)∪Subterm(E2).
A CCS expression E′ is a sub-term of E, or E contains E′, if E′ ∈ Subterm(E).

www.manaraa.com

304 R. Courbis

CCS Programs. A CCS program S is a 3-tuple S = (Λ, Γ, P0) where Λ ⊆ Act,

Γ ⊆ P×E is a finite set of equations, denoted by (P, E) or by P
def
= E, and P0 ∈

dom(Γ) is the head process name, which usually builds the complete system. For

example if we have : A
def
= a.B, B

def
= b.B, S = ({a, b}, {(A, a.B), (B, b.B)}, A)

is a CCS program.

Semantics. A CCS program S = (Λ, Γ, P0) defines the labeled transition system
(LTS) TCCS ⊆ E×Λ×E , built according to inference rules in Fig. 1. A transition
E

α→ E′ will denote the 3-uplet (E, α, E′) ∈ TE. In this context, CCS expressions
E and E′ can be called states.

Act
α.E

α→ E
Com1

E1
α→ E′

1

E1 ‖ E2
α→ E′

1 ‖ E2

Sum1
E1

α→ E′
1

E1 + E2
α→ E′

1

Com2
E2

α→ E′
2

E1 ‖ E2
α→ E1 ‖ E′

2

Sum2
E2

α→ E′
2

E1 + E2
α→ E′

2

Com3
E1

a→ E′
1 E2

ā→ E′
2

E1 ‖ E2
τ→ E′

1 ‖ E′
2

Res
E

α→ E′

E \ �
α→ E′ \ �

if α, ᾱ �= � ∈ �L

Con
E

α→ E′

P
α→ E′

if (P, E) ∈ Γ

Fig. 1. Inference rules of CCS

As a CCS program S = (Λ, Γ, P0) has a head process, the initial state of the
corresponding LTS is the state (or process) P0.

A CCS expression E can perform an action α and becomes a CCS expression
E′ if the transition E

α→ E′ can be inferred by the rules of Fig. 1. For example,
the transition (a.b.0 + c.0) ‖ d.0 a→ b.0 ‖ d.0, can be inferred by rules Com1,
Sum1 and Act.

Derivatives. If E
α→ E′, the pair (α, E′) is called the immediate derivative of

E. If E
α0→ . . .

αn→ E′, the pair (α0 . . . αn, E′) is called a derivative of E, where
α0 . . . αn is an action sequence.

Let deriv(E) be the set of all derivatives of E such that
deriv(E) = {(α0 . . . αn, E′) | E′ ∈ E , E

α0→ . . .
αn→ E′}.

3 Rewriting Approximations for CCS

Section 3 shows how to encode a CCS program into a TRS R and an initial
automaton A. The aim is to compute an over-approximation of R∗(L(A)) rep-
resenting an over-approximation of all derivatives of a CCS program and, then,
to verify properties such as absence of specific succession of actions.

www.manaraa.com

Rewriting Approximations for Properties Verification 305

3.1 Representation of a CCS Program and Semantics with Terms
and TRS

Terms for CCS Expressions. A term corresponding to a CCS expression in E
is built by induction on the structure of the CCS expression. Let FCCS be an
alphabet such that FCCS = F0∪F1∪F2∪F3, where F0 = {0}, F1 = {bar}∪Act,
F2 = {Pre, Sum, Com, Res, Sys}. Let Φ : E → T (FCCS) be the function such
that:

Φ(α.E) = Pre(Φ(α), Φ(E))
Φ(E1 + E2) = Sum(Φ(E1), Φ(E2))
Φ(E1 ‖ E2) = Com(Φ(E1), Φ(E2))
Φ(P) = P , if P ∈ P
Φ(E \ �) = Res(Φ(E), �)
Φ(0) = 0

Φ(α) =
{

α if α ∈ A
bar(a) if α = ā and α ∈ Ā

Example 2. Let E = (a.b.0 + c.0) ‖ d.0 be in E . The term corresponding to this
expression is:
Φ(E) = Com(Φ(a.b.0 + c.0), Φ(d.0)

= Com(Sum(Φ(a.b.0), Φ(c.0)), P re(d, Φ(0)))
= Com(Sum(Pre(a, Φ(b.0)), P re(c, Φ(0))), P re(d,0))
= Com(Sum(Pre(a, Pre(b, Φ(0))), P re(c,0)), P re(d,0))
= Com(Sum(Pre(a, Pre(b,0)), P re(c,0)), P re(d,0))

Terms for Derivatives. Let E be in E . A derivative (α0 . . . αn, E) is encoded into
a term of the type Sys(α0, Sys(. . . , Sys(αn, Φ(E)))). Formally, the encoding
function Ψ : deriv(E) × T (FCCS) is defined by:

Ψ((α, E)) = Sys(α, Φ(E))
Ψ((α0 . . . αn, E)) = Sys(α0, Ψ((α1 . . . αn, E)))

Rewriting Rules for CCS Semantics. Rewriting rules corresponding to CCS se-
mantic are in Figure 2.

ρ1 Pre(x, p) → Sys(x, p)
ρ2 Sum(Sys(x, p), r) → Sys(x, p)
ρ3 Sum(r, Sys(x, p)) → Sys(x, p)
ρ4 Com(Sys(x, p), r) → Sys(x,Com(p, r))
ρ5 Com(r, Sys(x, p)) → Sys(x,Com(r, p))
ρ6 Com(Sys(x, p), Sys(bar(x), r)) → Sys(τ,Com(p, r))
ρ7 Com(Sys(bar(x), p), Sys(x, r)) → Sys(τ,Com(p, r))
ρ8 Res(Sys(x, p), y) → Sys(x,Res(p, y))

Fig. 2. Rewriting rules for CCS semantics

www.manaraa.com

306 R. Courbis

Let Rϑ
sem denote the TRS defined by Rϑ

sem = {ρ1, . . . , ρ5} ∪ {lσ → rσ | σ =
(x, α), α ∈ ϑ, l → r ∈ {ρ6, ρ7}}, where ϑ ⊆ Act. Let RΘ1,Θ2

res be the TRS
defined by RΘ1,Θ2

res = {ρ8σ | σ(x) = α, σ(y) = β, α ∈ Θ1, β ∈ Θ2, α �= β},
where Θ1, Θ2 ⊆ Act. The right part of the union in Rϑ

sem is made to have a left-
linear TRS (as rewriting rules ρ6 and ρ7 are not left-linear) because completion
algorithm requires a left-linear TRS to be correct. And, let Rθ

Con denotes the
TRS defined such that Rθ

Con = {Φ(P)→ Φ(E) | (P, E) ∈ θ}, where θ ⊆ P × E .
Now, we can define a TRS and a tree automaton corresponding to a CCS

program.
Given a CCS program S = (Λ, Γ, P0), let us denote by LS the tree language

defined such that LS = {Φ(P0)}, and let us denote by RS the TRS defined such
that RS = RΛ

sem ∪RΓ
Con∪RΛ,Λ′

res , where Λ′ = ResAction(E)∪ResAction(P) for
all (P, E) ∈ Γ . The TRS RΓ

Con corresponds to the Con inference rule. The set
of actions Λ′ is the set of all actions � used for the restriction in the definition
of S. Thereafter, we will use the TRS RΛ,Λ′

sr = RΛ
sem ∪RΛ,Λ′

res .
The main idea is to compute the set R∗

S(LS), representing all derivatives of
P0, and, then, compute the intersection betweenR∗

S(LS) and a set of derivatives.
Intuitively, the TRS Rϑ

sem rewrites a term Φ(E) into a term Sys(α, Φ(E′)), if
it is possible, by rewriting leafs to the root. This process can be viewed as a
derivation of a transition E

α→ E′ by inference rules, but, in a reversed way.
Moreover, the TRS Rθ

Con corresponds to equation(s) of a CCS program and
handles recursion in equations.

Example 3. Let E = (a.b.0 + c.0) ‖ d.0 be in E . According to CCS semantics
we have the transition E

a→ b.0 ‖ d.0, justified by inference rules Com1, Sum1

and Act. With the help of the TRS RAction(E)
sem rules, the term Φ(E) is rewritten

Sys(a, (Com(Pre(b,0), P re(d,0)))). More precisely we have :
Com(Sum(Pre(a, Pre(b,0)), P re(c,0)), P re(d,0))

→ρ1 Com(Sum(Sys(a, Pre(b,0)), P re(c,0)), P re(d,0))
→ρ2 Com(Sys(a, Pre(b,0)), P re(d,0))
→ρ4 Sys(a, Com(Pre(b,0), P re(d,0)))

As we can see, it is possible to draw a parallel between proving that one
has E

a→ b.0 ‖ d.0 with inference rules of Fig. 1, and rewriting Φ(E) into
Ψ((a, b.0 ‖ d.0)): rule ρ1 matches with the inference rule Act, rule ρ2 with
Sum1, and rule ρ4 with Com1.

Lemma 1. Let α be in Act and Es, E be in E. If α.Es ∈ Subterm(E) then
Pre(α, Φ(Es)) is a sub-term of Φ(E).

Proof. We will show that there exists a position p ∈ Pos(Φ(E)) such that
Φ(E)|p = Pre(α, Φ(Es)) by structural induction on E and on p:

Case 1: E = β.E′

Case 1.1: β = α and E′ = Es

According to definition of Φ we have Φ(E) = Φ(α.Es) = Pre(α, Φ(Es))
and p = ε.

www.manaraa.com

Rewriting Approximations for Properties Verification 307

Case 1.2: β �= α or E′ �= Es

One has Φ(β.E′) = Pre(β, Φ(E′)) with α.Es is a sub-term of E′ and,
by induction hypothesis, there exists a position p = 2.p′ such that
Φ(E′)|p′ = Pre(α, Φ(Es). Then, the proof is by induction on E′, thus
p = 2.p′ satisfies the requirement.

Case 2: E = E1 + E2

Case 2.1: α.Es is a sub-term of E1

According to the definition of Φ we have :
Φ(E) = Φ(E1 + E2) = Sum(Φ(E1), Φ(E2)) with α.Es a sub-term of
E1. By induction hypothesis, one has p = 1.p′ such that Φ(E1)|p′ =
Pre(α, Φ(Es)). Then, the proof is by induction on E1.

Case 2.2: α.Es is a sub-term of E2

Similar to case 2.1.
Case 3: E = E1 ‖ E2

Similar to case 2.
Case 4: E = E′ \ �

According to definition of Φ we have Φ(E) = Res(Φ(E′), �) with α.Es a
sub-term of E′, and one has p = 1.p′ such that Φ(E′)|p′ = Pre(α, Φ(Es))}.
Then, the proof is by induction on E′.

There are no cases E = 0 or E = P with P ∈ P , because the condition of
lemma 1 α.Es ∈ Subterm(E) is not verified. ��

Proposition 1. Let E and E′ be two CCS expressions, let α ∈ Act, let AE =
Action(E) and A′

E = ResAction(E). If E
α→ E′ then

Sys(α, Φ(E′)) ∈ RAEA′
E∗

sr (Φ(E))

Proof. Assuming that E
α→ E′, we will show there exists a sequence of rewriting

rules r0, . . . , rn ∈ RAEA′
E∗

sr and a sequence of terms t0, . . . , tn ∈ T (FCCS) such
that Φ(E) = t0 →r0 . . .→rn tn = Sys(α, Φ(E′)). (1)

We begin by proving that r0 = ρ1. In fact, as Pos{Sys}(t0) = ∅, only rule
ρ1 can be applied to t0. As E

α→ E′, E contains a sub-term of the form α.Es,
then, according to Lemma 1, there exists a position p ∈ Pos(Φ(E)) such that
Φ(E)|p = Pre(α, Φ(Es)). We can conclude that there exists a substitution σ :
X → T (FCCS) such that t0 →ρ1 t0[rρ1σ]p (with ρ1 = lρ1 → rρ1). (2)

Now we have to show (1) using (2) by transition induction on the depth of
the inference by which the action E

α→ E′ is inferred. We argue by cases on the
form of E and its sub-terms:

Case 1: E = β.E1

As E
α→ E′, one has β = α and E1 = E′. Then, using (2), we have

Φ(E) = Pre(α, Φ(E′)) and Φ(E)→ρ1 Sys(α, Φ(E′)). One can conclude that
Sys(α, Φ(E′)) ∈ RAEA′

E∗
sr (Φ(E)).

Case 2: E3 = E1 + E2, where E3 is a sub-term of E

www.manaraa.com

308 R. Courbis

Case 2.1: (α, E′
1) is a derivative of E1

According to the definition of Φ, one has Φ(E3) = Sum(Φ(E1), Φ(E2)).
As Φ(E1) = Sys(α, Φ(E′

1)), and by induction hypothesis (1), there exists
a substitution σ1 : X → T (FCCS) such that lρ2σ1 →ρ2 rρ2σ1. We obtain
Φ(E3) →ρ2 Sys(α, Φ(E′

1)). If E3 = E then Proposition 1 is proved, else
the proof continues by induction on a sub-term of E containing E3.

Case 2.2: (α, E′
2) is a derivative of E2

Similar to case 2.1.
Case 3: E3 = E1 ‖ E2

Similar to case 2.
Case 4: E2 = E1 \ �, where E2 is a sub-term of E such that (α, E′

1) if a deriva-
tive of E1.
According to the Φ definition, one has Φ(E2) = Res(Φ(E1), Φ(�)). As Φ(E1) =
Sys(α, Φ(E′

1)), one has Φ(E2) = Res(Sys(α, Φ(E′
1)), Φ(�)).

One obtains Φ(E2) →ρ8 Sys(α, Res(Φ(E′
1), Φ(�))). If E2 = E then Proposi-

tion 1 is proved, else the proof continues by induction on a sub-term of E
containing E2.

��
Directly from Proposition 1, we can deduce that for all D ∈ Deriv(E) one
has Ψ(D) ∈ RAEA′

E∗
sr (Φ(E)). Moreover, for CCS programs (and not only CCS

expressions as in Proposition 1) we have the following proposition:

Proposition 2. Let S = (Λ, Γ, P0) be a CCS program. If d ∈ Deriv(P0) then
Ψ(d) ∈ R∗

S(LS).

Proof. We will show that Ψ(P0) →∗
RS

Ψ(d). As d ∈ Deriv(P0), one has
d = (α0 . . . αn, En) and by definition one has P0

α0→ E1 . . .
αn→ En. As

P0 ∈ P and P0
α0→ E1, there exists (P0, E0) ∈ Γ such that E0

α0→ E1.
Let Λ′ = ResAction(E) ∪ ResAction(P) for all (P, E) ∈ Γ . According to
Proposition 1, one has Φ(E0) →∗

RΛΛ′
sr

Sys(α0, Φ(E1)). In addition, one has
Φ(E0)→∗

RΛΛ′
sr

Sys(α0, Φ(E1))→∗
RΛΛ′

sr

. . .→∗
RΛΛ′

sr
Sys(α0, Sys(. . . , Sys(αn−1, Φ(En−1)) . . .))→∗

RΛΛ′
sr

Sys(α0, Sys(. . . , Sys(αn, Φ(En)) . . .)).
It remains to prove that Φ(P0) →∗

RS
Φ(E0). By definition, there ex-

ists a rewriting rule Φ(P0) → Φ(E0) ∈ RΓ
Con. From this we obtain that

Φ(P0) →∗
RS

Φ(E0). Finally we can conclude Φ(P0) →∗
RS

Φ(E0) →∗
RΛΛ′

sr

Sys(α0, Φ(E1)) →∗
RΛΛ′

sr
. . . →∗

RΛΛ′
sr

Ψ((α0 . . . αn−1, En−1)) →∗
RΛΛ′

sr
Ψ(d) which

completes the proof. ��

4 The Alternating Bit Protocol Verification

This section shows that the Alternating Bit Protocol (ABP) CCS program is not
able to perform a specific succession of actions represented by a set of derivatives.

www.manaraa.com

Rewriting Approximations for Properties Verification 309

Given the TRS R and the language L, corresponding to the ABP CCS pro-
gram, the construction of the set R∗(L) is not possible, but an over-approxima-
tion K of this reachability set can be computed [14, 19]. Because of the
over-approximation, we can only deduce that a language Lp is not reachable
(R∗(L) ∩ Lp = ∅) if K ∩ Lp = ∅. In our case, the language K recognises an
over-approximation of all possible derivatives of the ABP CCS program, and
the language Lp recognises a set of derivatives we do not want to be in K. Then,
if the intersection between K and Lp is empty, we can conclude that the set of
all possible derivatives of the ABP CCS Program does not contain derivatives
represented by Lp.

4.1 The Alternating Bit Protocol Description

The ABP is a protocol made to ensure the successful transmission of messages
through a channel which may lose or duplicate data. More precisely, the ABP
is composed of a Sender and a Receiver communicating via two channels (which
may lose or duplicate messages) called Trans and Ack. The Sender sends a
message with a bit b through the Trans channel, and sends it one or more times
until the Receiver sends an acknowledgment with the bit b through the Ack
channel. After the reception of this message by the Sender, it sends (once or
more) another message with the bit b − 1 (also written b̂) until it receives an
acknowledgment with the bit b̂, and so on.

4.2 Modeling the ABP

The CCS specification of ABP used in this article can be found in [22], and is
represented by the CCS program ABP = (Λ, Γ, AB) where :

– the set Λ = {accept, ack(b), deliver, reply(b), send(b), trans(b)};
– the set Γ is composed of rules in Figures 3 and 4, where for each transition

A
α→ B we have (A, α.B) ∈ Γ , with A, B ∈ E and α ∈ Λ.

The corresponding TRS RABP and tree language LABP is defined according
to definition in Section 3. But also, we have to add rewriting rules to handle
sequences of bits.

4.3 Verifying the ABP

In this section we will show how to verify, using the tool Tomedtimbuk [2], that
the ABP can not send a message with the bit b after an acknowledgment with
the bit b.

We proceed as follows: first, the property is modeled using patterns. Then,
we have to find an abstraction function suitable for our analysis to ensure ter-
mination of the completion. Finally we use the Tomedtimuk tool to prove auto-
matically that the ABP can not acknowledge and then send a message with the
same bit.

www.manaraa.com

310 R. Courbis

Send(b)
def
= send(b).Sending(b)

Sending(b)
def
= τ.Send(b) + ack(b).Accept(b̂) + ack(b̂).Sending(b)

Accept(b)
def
= accept.Send(b)

Reply(b)
def
= reply(b).Replying(b)

Replying(b)
def
= τ.Reply(b) + trans(b̂).Deliver(b̂) + trans(b).Replying(b)

Deliver(b)
def
= deliver.Reply(b)

AB
def
= Accept(b̂) ‖ Trans(ε) ‖ Ack(ε) ‖ Reply(b)

Fig. 3. System equations for ABP

Ack(bs)
ack(b)−→ Ack(s)

Ack(s)
reply(b)−→ Ack(sb)

Ack(sbt)
τ→ Ack(st)

Ack(sbt)
τ→ Ack(sbbt)

Trans(sb)
trans(b)−→ Trans(s)

Trans(s)
send(b)−→ Trans(bs)

Trans(tbs)
τ→ Trans(ts)

Trans(tbs)
τ→ Trans(tbbs)

where s, t ∈ {0, 1}∗ and b ∈ {0, 1}.

Fig. 4. System transitions for ABP

The property modelisation is very simple, one can use the following patterns:

Sys(s,Sys(bar(send(b)),Sys(ack(b),Sys(bar(send(b)),Sys(ss,p)))))
Sys(s,Sys(bar(send(inv(b))),Sys(ack(inv(b)),Sys(bar(send(inv(b))),Sys(ss,p)))))
Sys(s,Sys(bar(send(b)),Sys(ack(b),Sys(bar(send(b)),p))))
Sys(s,Sys(bar(send(inv(b))),Sys(ack(x,y,inv(b())),Sys(bar(send(inv(b))),p))))
Sys(bar(send(b)),Sys(ack0(b),Sys(bar(send(b)),p)))
Sys(bar(send(inv(b))),Sys(ack(inv(b)),Sys(bar(send(inv(b))),p)))

where s, ss and p can be anything in T (FCCS). Those six patterns represent
all possible derivatives of ABP where an action send(b) succeeds to an action
ack(b) (with b ∈ {0, 1}).

Concerning the abstraction function, the main idea is to abstract each ac-
tion involved in the property in one state, and all other actions into one other
state. Abstraction rules for the ABP actions, process names and bits are: [x →
y] → [b → qb, inv(qb) → qb, send(qb) → qsend, bar(qsend) → qsend, ack(qb) →
qack, accept(qb) → qrem, reply(qb) → qrem, trans(qb) → qrem, deliver(qb) →
qrem, nil→ qrem, bar(qrem)→ qrem, Send(qb)→ qrem, Sending(qb)→ qrem,
Accept(qb) → qrem, Reply(qb) → qrem, Replying(qb) → qrem, Deliver(qb) →
qrem]. The [x → y] part matches any new transition which need to be nor-
malized. The rules b→ qb and inv(qb)→ qb merge all bit into one state qb. The
rules send(qb)→ qsend, bar(qsend)→ qsend and ack(qb)→ qack merge all actions
send(b) and ack(b) into, respectively, states qsend and qack. All others actions
and process names are merged into one state qrem, according to the fact that
those last actions and process names are not referenceed by the property.

www.manaraa.com

Rewriting Approximations for Properties Verification 311

Finally, given the initial automaton recognizing LABP , the TRS RABP , the
property and the abstraction function, the Tomedtimbuk tool computes a fix-
point automaton Ak over-approximating the set of all possibles derivatives of
ABP. The intersection between L(Ak) and the property is empty, so we can con-
clude the ABP can not do an action send(b) after an action ack(b), according
to the following Proposition 3.

Proposition 3. Let S = (Λ, Γ, P0) be a CCS program, let Lp be the language
representing a derivative (α0 . . . αn, E) with α0, . . . , αn ∈ Λ and E ∈ E such that
Lp = {Ψ((α0 . . . αn, E))}. One has: R∗

S(LS)∩Lp = ∅ if and only if (α0 . . . αn, E)
is not a derivative of P0.

Proof. We have to prove that (R∗
S(LS)∩Lp = ∅)⇔ ((α0 . . . αn, E) �∈ Deriv(P0)).

The proof is divided into two parts: we will prove that (R∗
S(LS) ∩ Lp = ∅) ⇒

((α0 . . . αn, E) �∈ Deriv(P0)) (1), and then that ((α0 . . . αn, E) �∈ Deriv(P0)) ⇒
(R∗

S(LS) ∩ Lp = ∅) (2).
(1) By contraposition of Proposition 2, one has (R∗

S(LS) ∩ Lp = ∅) ⇒
((α0 . . . αn, E) �∈ Deriv(P0)).

(2) Suppose that ((α0 . . . αn, E) �∈ Deriv(P0))⇒ (R∗
S(LS) ∩ Lp = ∅) is false,

we have the following hypothesis : ((α0 . . . αn, E) �∈ Deriv(P0))∧(R∗
S(LS)∩Lp �=

∅). If R∗
S(LS) ∩ Lp �= ∅ then Ψ(P0) →∗

RS
Ψ((α0 . . . αn, E)). We will prove that

(α0 . . . αn, E) ∈ Deriv(P0) which is in contradiction with the hypothesis. In
order to succeed we have to prove the Lemma 2.

Lemma 2. Let E and E′ be two CCS expressions, let α be an action name and
let AE = Action(E) and A′

E = ResAction(E). If Φ(E)→∗
RAEA′

E
sr

ψ((α, E′)) then

E
α→ E′.

Proof. We have to show that E′ can be built according to the inference rules of
Figure 1 from E.

As Pos{Sys}(Φ(E)) = ∅, one has Φ(E) →ρ1 t1 →∗
RAEA′

E
sr

Ψ((α, E′)) such that

there exists p ∈ Pos(t1) where Φ(E)|p = Pre(α, Φ(E1)) and t1|p = Sys(α, Φ(E1)).
If p = ε then one has Φ(E) ≡ Φ(α.E′), and we can deduce that E

α→ E′ according
to the Act inference rule. Else, one has α.E1

α→ E1.
Then, we argue by cases of the term at a position p′, such that p = p′.1 or

p = p′.2:

Case 1: t1|p = Sum(Sys(α, Φ(E1)), t2) (resp. t1|p = Sum(t2, Sys(α, Φ(E1))))
According to rewriting rule ρ2 (resp. ρ3), it follows that t1|p →ρ2 Sys(α, Φ(E1))
(resp. t1|p →ρ3 Sys(α, Φ(E1))). As α.E1

α→ E1, hence α.E1 + E2
α→ E1

(where t2 = Φ(E2)), according to Sum1 and Sum2 inference rules.
Case 2: t1|p = Com(Sys(α, Φ(E1)), t2) (resp. t1|p = Com(t2, Sys(α, Φ(E1))))

Similar to Case 1.
Case 3: t1|p′.1 = Res(Sys(α, Φ(E1)), �), with � an action name. According

to rewriting rule ρ8, it follows that t1|p′.1 →ρ8 Sys(α, Res(Φ(E1), �)). As
α.E1

α→ E1, hence α.E1 \ �
α→ E1 \ � according to Res inference rule.

��

www.manaraa.com

312 R. Courbis

Consequently to Lemma 2, one has (α0 . . . αn, E) ∈ Deriv(P0) if Ψ(P0) →∗
RS

Ψ((α0 . . . αn, E)). This contradicts the hypothesis and proves (2).
Finally, from proofs of (1) and (2), one can conclude that (R∗

S(LS) ∩ Lp =
∅)⇔ ((α0 . . . αn, E) �∈ Deriv(P0)). ��

5 Hardware Components Verification

In this section we are going to verify properties over two hardware components
specified with CCS [25].

5.1 The Lockable Component

The Lockable component is composed of two elements:

– one element with three inputs a, b and free, and one output z ;
– one element with two inputs lock and unlock, and one output free.

We call Lockable the component including the parallelization of this two elements,
while restricting the free action. Lockable allows the lock and unlock effects on
z output. Indeed, there is no output z when the lock action is done, until the
unlock is done. And there is an output z only after a silent action. The CCS
program corresponding to the Lockable component is defined in Figure 5, where
LC is the initial process.

The property we want to verify is : Is Lockable able to realize an action lock
followed by an action z ? To answer this question, we proceed in a same way
that for ABP. A TRS RLC and a tree automaton ALC are constructed from the
Lockable CCS program, the abstraction function is written following the principle
used for ABP. Finally, a tree automaton Ap is build to recognize derivative of
the form(α∗(lockz)α∗, E) (where α is an action and E a CCS expression). Using
Tomedtimbuk tools, one has R∗

LC(L(ALC)) ∩ L(Ap) = ∅, so we can answer No
to the question.

LockC
def
= (a.b + b.a).free.z.C

Lock
def
= free.Lock + lock.unlock.Lock

LC
def
= (LockC ‖ Lock) \ {free}

Fig. 5. Equations for the Lockable
component

U1
def
= r1.gS.g1.d1.pS.a1.U1

U2
def
= r2.gS.g2.d2.pS.a2.U2

S
def
= (gS.pS.S) \ {gS, pS}

Fig. 6. Equations for the RGDA
component

5.2 The RGDA Component

The RGDA component (Request Grant Done Acknowledgment) is a component
handling two users access to a critical section. It ensures that one user access
to this section at a time. The CCS program corresponding to this component is
composed by equations of Figure 6, where S is the initial process, U1 and U2 are
users.

www.manaraa.com

Rewriting Approximations for Properties Verification 313

The property we want to verify is : Is RGDA able to realize the actions g1 and
g2 successively ? As the Lockable component, a TRS RRGDA, a tree automaton
ARGDA, an abstraction function and a tree automaton Ap are defined. The tree
automaton Ap recognizes derivatives of the form (α∗(g1g2)α∗, E) (where α is
an action and E a CCS expression). With the help of Tomedtimbuk, one can
compute that R∗

RGDA(L(ARGDA)) ∩ L(Ap) = ∅, so we can answer No to the
question.

6 Conclusion and Related Works

The paper describes a method of encoding CCS specifications into a TRS and
a tree automaton. Using the completion algorithm, one can compute an over-
approximation of reachable derivatives K, modulo bisimulation. It means that
the set K do not contain CCS expressions bisimilar to CCS expressions of deriva-
tives in K. Then, it is possible to semi-decide if derivatives, encoded into a tree
automaton, are reachable or not. So, bisimilar CCS expressions have to be-
long to those derivatives in order to get a correct answer by the semi-decision
procedure.

For other existing process algebras like CSP, BPP, BPA, PA, SDL, LOTOS,
. . ., sharing syntax and semantics elements with CCS, it could be insteresting to
adapt the over-approximation rewriting to those process algebras.

Furthermore, to build this over-approximation, a pertinent abstraction func-
tion is needed i.e. the abstraction function allows the termination of the
over-approximation computation without introducing spurious counter-examples
which prevent the verification to conclude. In sections 4 and 5, abstraction func-
tions can easily be generated automatically according to a property. However,
it is not always possible. Note that the automatic generation of abstraction
function has already been used for the protocol verification [3].

Related Works. It exists some tools made for the verification of CCS programs,
as the Edinburgh Concurrency Workbench [23], the Concurrency Workbench
North Carolina [9] and XMC [24], which are finite-state model-checkers while
our technique deals with infinite-state systems. Also, verification of CCS pro-
grams can be done with Maude [27], where the CCS semantics is represented by
conditional rewriting rules, while our method uses rewriting rules.

In [15], authors present a semi-decision procedure allowing verification of
ACTL properties [11] (action based temporal properties) for infinite states sys-
tems. The method presented in this article does not handle CTL properties, but
allows to verify reachability properties, based on actions and on CCS expres-
sions. This property is represented by a tree automaton, instead of a temporal
property. This can be similar to the proof by bisimulation, where behaviors of
two CCS expressions are compared from the action point of view.

www.manaraa.com

314 R. Courbis

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998)

2. Balland, E., Boichut, Y., Genet, T., Moreau, P.-E.: Towards an Efficient Implemen-
tation of Tree Automata Completion. In: Bevilacqua, V., Roşu, G. (eds.) AMAST
2008. LNCS, vol. 5140, pp. 67–82. Springer, Heidelberg (2008)

3. Boichut, Y.: Approximations pour la vérification automatique de proto-
coles de sécurité. Thèse de doctorat, Laboratoire Informatique de l’université
de Franche-Comté, Université de Franche-Comté, Besançon, France (2006),
http://www.irisa.fr/lande/boichut/publications.html

4. Boichut, Y., Courbis, R., Héam, P.C., Kouchnarenko, O.: Finer is Better: Abstrac-
tion Refinement for Rewriting Approximations. In: Voronkov, A. (ed.) RTA 2008.
LNCS, vol. 5117, pp. 48–62. Springer, Heidelberg (2008)

5. Boichut, Y., Genet, T., Jensen, T., Le Roux, L.: Rewriting Approximations for Fast
Prototyping of Static Analyzers. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533,
pp. 48–62. Springer, Heidelberg (2007)

6. Boichut, Y., Héam, P.C., Kouchnarenko, O.: Approximation-based tree regular
model-checking. Nordic Journal of Computing (2009) (to appear)

7. Busi, N., Gabbrielli, M., Zavattaro, G.: Replication vs. Recursive Definitions in
Channel Based Calculi. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger,
G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 133–144. Springer, Heidelberg (2003)

8. Clarke, E.M.: Counterexample-guided abstraction refinement. In: TIME-ICTL, p.
7. IEEE Computer Society (2003)

9. Cleaveland, R., Sims, S.: The NCSU Concurrency Workbench. In: Alur,
R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 394–397. Springer,
Heidelberg (1996)

10. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tom-
masi, M.: Tree Automata Techniques and Applications (2002),
http://www.grappa.univ-lille3.fr/tata/

11. De Nicola, R., Vaandrager, F.: Action Versus State Based Logics for Transition
Systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990)

12. Dershowitz, N., Jouannaud, J.P.: Handbook of Theoretical Computer Science. In:
Rewrite Systems, vol. B, ch.6, pp. 244–320. Elsevier Science Publishers B. V (1990)

13. Feuillade, G., Genet, T., VietTriemTong, V.: Reachability analysis over term
rewriting systems. Journal on Automated Reasoning 33 (3-4) (2004)

14. Feuillade, G., Genet, T., Tong, V.V.T.: Reachability analysis over term rewriting
systems. Journal of Automated Reasoning 33(3-4), 341–383 (2004)

15. Francesco, N.D., Fantechi, A., Gnesi, S., Inverardi, P.: Model checking of non-finite
state processes by finite approximations. In: Brinksma, E., Steffen, B., Cleaveland,
W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019,
pp. 195–215. Springer, Heidelberg (1995)

16. Genet, T., Klay, F.: Rewriting for Cryptographic Protocol Verification. In:
McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 271–290. Springer,
Heidelberg (2000)

17. Gilleron, R., Tison, S.: Regular tree languages and rewrite systems. Fundamenta
Informatica 24(1/2), 157–174 (1995)

18. Gyenizse, P., Vágvölgyi, S.: Linear Generalized Semi-Monadic Rewrite Sys-
tems Effectively Preserve Recognizability. Theoretical Computer Science 194(1-2),
87–122 (1998)

http://www.irisa.fr/lande/boichut/publications.html
http://www.grappa.univ-lille3.fr/tata/

www.manaraa.com

Rewriting Approximations for Properties Verification 315

19. Jacquemard, F.: Decidable Approximations of Term Rewriting Systems. In:
Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 362–376. Springer,
Heidelberg (1996)

20. Lamport, L.: A temporal logic of actions. ACM Transactions On Programming
Languages And Systems, TOPLAS 16(3), 872–923 (1994)

21. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. SV (1992)

22. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
23. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench: A seman-

tics based tool for the verification of concurrent systems. ACM Transactions on
Programming Languages and Systems 15 (1994)

24. Ramakrishna, Y.S., Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A., Swift,
T., Warren, D.S.: Efficient Model Checking Using Tabled Resolution. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 143–154. Springer, Heidelberg
(1997)

25. Stevens, K., Aldwinckle, J., Birtwistle, G., Liu, Y.: Designing parallel specifica-
tions in ccs. In: Proceedings of Canadian Conference on Electrical and Computer
Engineering, pp. 983–986 (1993)

26. Takai, T., Kaji, Y., Seki, H.: Right-Linear Finite-Path Overlapping Term Rewriting
Systems Effectively Preserve Recognizability. In: Bachmair, L. (ed.) RTA 2000.
LNCS, vol. 1833, pp. 246–260. Springer, Heidelberg (2000)

27. Verdejo, A., Mart́ı-Oliet, N.: Two case studies of semantics execution in Maude:
CCS and LOTOS. Formal Methods in System Design 27, 113–172 (2005)

www.manaraa.com

Type Checking Cryptography Implementations

Manuel Barbosa1, Andrew Moss2, Dan Page3,
Nuno F. Rodrigues1,4, and Paulo F. Silva1

1 Departamento de Informática, Universidade do Minho, Portugal
2 School of Computing, Blekinge Institute of Technology, Sweden

3 Department of Computer Science, University of Bristol, United Kingdom
4 DIGARC, Instituto Politécnico do Cávado e do Ave, Portugal

Abstract. Cryptographic software development is a challenging field:
high performance must be achieved, while ensuring correctness and com-
pliance with low-level security policies. CAO is a domain specific language
designed to assist development of cryptographic software. An important
feature of this language is the design of a novel type system introducing
native types such as predefined sized vectors, matrices and bit strings,
residue classes modulo an integer, finite fields and finite field extensions,
allowing for extensive static validation of source code. We present the
formalisation, validation and implementation of this type system.

1 Introduction

The development of cryptographic software is clearly distinct from other areas of
software engineering. The design and implementation of cryptographic software
draws on skills from mathematics, computer science and electrical engineering.
Also, since security is difficult to sell as a feature in software products, cryp-
tography needs to be as close to invisible as possible in terms of computational
and communication load. As a result, cryptographic software must be optimised
aggressively, without altering the security semantics. Finally, cryptographic soft-
ware is implemented on a very wide range of devices, from embedded processors
with very limited computational power and memory, to high-end servers, which
demand high-performance and low-latency. Therefore, the implementation of
cryptographic kernels imposes a specific set of challenges that do not apply to
other system components. For example, direct implementation in assembly lan-
guage is common, not only to guarantee a more efficient implementation, but
also to ensure that low-level security policies are satisfied by the machine code.

The CAO Language. The CAO language aims to change this state of affairs,
allowing natural description of cryptographic software implementations, which
can be analysed by a compiler that performs security-aware analysis, transforma-
tion and optimisation. The driving principle behind the design of CAO is that the
language should support cryptographic concepts as first-class language features.
Unlike the languages used in mathematical software packages such as Magma or
Maple, which allow the description of high-level mathematical constructions in

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 316–334, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

Type Checking Cryptography Implementations 317

their full generality, CAO is restricted to enabling the implementation of crypto-
graphic components such as block ciphers, hash functions and sequences of finite
field arithmetic for Elliptic Curve Cryptography (ECC).

CAO preserves some higher-level features to be familiar to an imperative pro-
grammer, whilst focusing on the implementation aspects that are most critical
for security and efficiency. The memory model of CAO is, by design, extremely
simple to prevent memory management errors (there is no dynamic memory
allocation and it has call-by-value semantics). Furthermore, the language does
not support any input/output constructions, as it is targeted at implementing
the core components in cryptographic libraries. In fact, a typical CAO program
comprises only the definition of a global state and a set of functions that per-
mit performing cryptographic operations over that state. Conversely, the native
types and operators in the language are highly expressive and tuned to the spe-
cific domain of cryptography. In short, the design of CAO allowed trading off the
generality of a language such as C or Java, for a richer type system that permits
expressing cryptographic software implementations in a more natural way.

CAO introduces as first-class features pure incarnations of mathematical types
commonly used in cryptography (arbitrary precision integers, ring of residue
classes modulo an integer, finite field of residue classes modulo a prime, finite
field extensions and matrices of these mathematical types) and also bit strings
of known finite size. A more expressive type system would be expected from any
domain-specific language. However, in the case of CAO, the design of the type
system was taken a step further in order not only to allow an elegant formali-
sation of the type checking rules, but also to allow the efficient implementation
of a type checking system that performs extensive preliminary validation of the
code, and extracts a very rich body of information from it. This fact makes the
CAO type checker a critical building block in the implementation of compilation
and formal verification tools supporting the language.

Contributions. This paper presents the formalisation, validation and imple-
mentation of the CAO type system. Our main contribution is to show that the
trade-offs in language features that were introduced in the design of CAO –
specifically for cryptographic software implementation – enabled us to tame the
complexity of formalising and validating a surprisingly powerful type system.
We also show, resorting to practical examples, how this type system enforces
strong typing rules and how these rules detect several common run-time errors.
To support this claim, we outline our proof of soundness of the CAO type system.

More in detail, we describe a formalisation of the CAO type system and the
corresponding implementation of a type checker1 as a front-end of the CAO tool
chain. One of the main achievements of our system is the enforcement of strong
typing rules that are aware of type parameters in the data types of the language.
The type checking rules permit determining concrete values for these parameters
and, furthermore, resolving the consistency of these parameters inside CAO pro-
grams. Concretely, the CAO type system explicitly includes as type parameters

1 An implementation of a CAO interpreter (including the type system and semantics)
is available via http://www.cace-project.eu.

http://www.cace-project.eu

www.manaraa.com

318 M. Barbosa et al.

the sizes of containers such as vectors, matrices and bit strings. In other words,
CAO is dependently typed. Furthermore, typing of complex operations over these
containers, including concatenation and extensional assignment, statically checks
the compatibility of these parameters.

More interestingly, we are able to handle parameters in mathematical types
in a similar way. Our type system maintains information for the concrete val-
ues of integer moduli and polynomial moduli, so that it is possible to validate
the consistency of complex mathematical expressions, including group and finite
field operations, the conversion between a finite field element and its polynomial
representation, and other type conversions. Finally, the CAO type system also
deals with language usability issues that include implicit (automatic) type con-
versions between bit strings and the integer value that they represent, and also
between values within the same finite field extension hierarchy.

Paper Organisation. In Sect. 2 we expand on the relevant features of CAO.
We then build some intuition for the subsequent formal presentation of the type
system by introducing real-world examples of CAO code in Sect. 3. In Sect. 4
we present the CAO type system, including a detailed example of its operation.
In Sect. 5 we describe our implementation. We conclude with a discussion of
soundness and related work in Sect(s). 6 and 7.

2 A Closer Look at CAO

Real world examples of the most relevant CAO language features are presented
in Sect. 3. We now provide an intuitive description of the CAO type system.

Bit Strings. The bits type represents a string of n bits (labelled 0 . . . n − 1,
where the 0-th is the least-significant bit). This should not be seen as the “bit
vector” type, as the get operator a[i] actually returns type bits[1]. The distinction
between ubits and sbits concerns only the conversion convention to the integer
type, which can be unsigned or two’s complement respectively. The bits type is
equipped with a set of C-like bit-wise operators, including the usual Boolean,
shift and rotate operators, which are closed over the bit-length. The range se-
lection/assignment (or slicing) operator (..), combined with the concatenation
operator @ can be used to (de)construct bit strings of different sizes using a
very concise syntax. For example, the following is a valid CAO statement over
bit strings:

a[3..8] := b[0..2] @ c[2..4];

Integers and the mod Type. Operations modulo some prime or composite
integer are used extensively in cryptography [6]; for example, the ring2 Zn un-
derlies the pervasively used RSA function [4], and the finite field3 Fp is widely

2 The ring of residue classes modulo an integer n can be seen as the set of numbers in
the range 0 to n-1 with addition and multiplication modulo n.

3 The ring of residue classes modulo an integer p is actually a field when p is prime:
all non-zero elements have a multiplicative inverse.

www.manaraa.com

Type Checking Cryptography Implementations 319

used in ECC. Therefore, CAO includes not only arbitrary precision integers as
a native type (int), but also a mod[n] type. For example, the mod[7] type is an
instance of mod with modulus 7. In this case the modulus is prime, and hence
inhabitants of this type are actually elements of a finite field. More generally,
the modulus can be prime or composite, provided it is fixed at compile-time.
Algebraic operations over the mod type are closed over the modulus parameter.

Internal Representation and Casts. The internal representation of math-
ematical types is deliberately undefined. The CAO semantics ensures that arith-
metic with such values is valid, but makes no guarantee about (and hence disal-
lows access to) their physical representation. Nevertheless, the CAO type system
includes the necessary functionality to access the conceptually natural represen-
tation of algebraic types, by supporting appropriate cast operators. For example,
to obtain the representation of a finite field element in mod[p] as an integer value
of the appropriate range, one simply casts it into the int type. To obtain the rep-
resentation of an arbitrary precision integer, one can cast it into a bit string
of a predetermined size, and so on. Hence, compared to C, a CAO cast is more
explicitly a conversion. Aside from this nuance, the syntax of casts is similar to
C: one specifies the target type in parenthesis, e.g. y := (int) x.

General Moduli. An alternative form of the mod type allows defining finite
field extensions, as shown below:

typedef a := mod[2];

typedef b := mod[a<X> / X**8 + X**4 + X**3 + X + 1];

The type synonym a represents a mod type whose modulus is 2; this is simply the
field F2. This is used as the base type for a second type synonym b which repre-
sents the field F28 . In addition to the base type one also specifies an indeterminate
symbol (in this case X), and an irreducible polynomial in the ring of polynomials
with coefficients in the base type (in this case P (X) = X8+X4+X3+X+1). In-
tuitively, this declaration defines an implementation of the field based on the re-
ferred polynomial ring, with arithmetic defined via standard polynomial algebra
with reductions modulo P (X). To access the coefficients in this representation,
one can cast the value into a vector of elements in the base type.

Matrices. The matrix type represents a 2-dimensional algebraic matrix over
which one can perform addition and multiplication. For this reason, there are
some restrictions on what the base type can be. The matrix type also has an
undefined representation; its size must be fixed at compile-time, but the ordering
of elements in memory (e.g. row-major or column-major order) is a choice that
can be made by the compiler. The matrix type also supports get and range
selection/assignment operations that permit easily (de)constructing matrices of
different sizes.

Vectors. The vector type represents a 1-dimensional generic container of ele-
ments of homogeneous type, where each element is referred to by a single index
in the range 0 . . . n− 1, offering selection/assignment, concatenation and rotate
operations similar to the bits type.

www.manaraa.com

320 M. Barbosa et al.

3 CAO Type System in Action

In this section we present some examples of CAO code taken from the implemen-
tation of the NaCl cryptographic library4 that illustrate the validation capacity
of the type checker over real world examples.

The following program fragment was taken from the implementation of the
poly1305 one-time message authentication mechanism [2]. The function receives
two vectors ciu and ru of content type byte, which is an alias for type unsigned
bits[8], and an integer q. It returns a value of type mod1305, an alias for type
mod[2**130-5].

def polyStep(ciu:vector[17] of byte, ru:vector[16] of byte, q:int) : mod1305 {
def r : unsigned bits[16*8]; def ci : unsigned bits[17*8];

r := ru[0]@ru[1]@ru[2]@ru[3]@ru[4]@ru[5]@ru[6]@ru[7]@ru[8]@ru[9]@ru[10]@
ru[11]@ru[12]@ru[13]@ru[14]@ru[15];

ci:= ciu[0]@ciu[1]@ciu[2]@ciu[3]@ciu[4]@ciu[5]@ciu[6]@ciu[7]@ciu[8]@
ciu[9]@ciu[10]@ciu[11]@ciu[12]@ciu[13]@ciu[14]@ciu[15]@ciu[16];

return ((mod1305)ci * (mod1305)r**q); }

The type system must solve the following problems to type the function body.
Firstly, the concatenation of several bit strings must be typed to a single bit
string of the appropriate type and size (and fail if these do not match in assign-
ment). Secondly, the type checker must recognise that the cast to type mod1305
requires the expression on the right to be coerced to type int.

The next program fragment is from the NaCl implementation of hsalsa20 [3].

seq i := 0 to 3 {
x[i+1] := from_littleendian(k[i*4..i*4+3]);
x[i+6] := from_littleendian(in[i*4..i*4+3]);
x[i+11] := from_littleendian(k[i*4+16..i*4+19]); }

...
seq i := 0 to 3 {

out[i*4..i*4+3] := to_littleendian(x[5*i]);
out[i*4+16..i*4+19] := to_littleendian(x[i+6]); }

This is a good example of how CAO was fine tuned to provide assistance to
the programmer in what, at first sight, might seem like a surprisingly powerful
validation procedure. Range selection and assignment operators in bit strings,
vectors and matrices may depend on the value of integer expressions, which can
only be formed by literals, constants and basic arithmetic operations that can
be evaluated at compile-time. This might seem just like a pre-processing step
of compilation, were it not for the fact that we are also able to include in these
expressions locally defined constants. Our type system is able to validate that all
range selections (resp. assignments) result in vectors that are compatible with
calls to function from littleendian (resp. return type of function to littleendian).

Finally, the following code snippet is extracted from a CAO implementation
of AES. It shows how our type system is capable of dealing with the complex
mathematical types that arise in cryptographic implementations. In this case we
have a matrix multiplication operation mix * s[0..3,i], where the contents of the
matrices are elements of a finite field extension GF2N.
4 http://nacl.cr.yp.to

http://nacl.cr.yp.to

www.manaraa.com

Type Checking Cryptography Implementations 321

n : Num Numerals pg : Progs Programs
x : IdV Variable Identifiers e : Exp Expressions
fp : IdFP Function and Procedure Identifiers c : Stm Statements
dv : DecV Variable declarations l : Lv LValues
dfp : DecFP Function and Procedure declarations pol : Poly Polynomials
ds : DecS Struct declarations t : Types Types

e ::= n | true | false | x | −e | e1 † e2 | e.x | e1[e2] | e1[e2..e3] |
e1[e2, e3] | e1[e2..e3, e4..e5] |∼ e | (t) e | fp(e1, ..., en) | ! e

l ::= x | l.x | l[e] | l[e1..e2] | l[e1, e2] | l[e1..e2, e3..e4]
c ::= dv | l1, ..., li := e1, ..., ej | c1; c2 | if (e) { c1 } | if (e) { c1 } else { c2 } |

while (e) { c } | seq x := e1 to e2 by e3 { c } | seq x := e1 to e2 { c } |
return e1, ..., en | fp(e1, ..., en)

dv ::= def x1, ..., xn : t1, ..., tn | def x1, ..., xn : t1, ..., tn:=e1, ..., en
ds ::= typedef x := t; | typedef x1 := struct [def x2 : t1; ...; def xn : tn];
dfp ::= def fp (x1 : t1, ..., xn : tn) : rt { c }
rt ::= void | t1, . . . , tn
t ::= x | int | bool | signed bits [e] | unsigned bits [e] | mod [e] | mod [t x / pol] |

vector [n] of t | matrix [n1, n2] of t
pg ::= dv ; | ds | dfp | pg1 pg2

Fig. 1. Formal syntax of CAO

typedef GF2 := mod[2];
typedef GF2N := mod[GF2<X> / X**8 + X**4 + X**3 + X + 1];
typedef S := matrix[4,4] of GF2N;

def mix : matrix[4,4] of GF2N :=
{[X],[X+1],[1],[1],[1],[X],[X+1],[1],[1],[1],[X],[X+1],[X+1],[1],[1],[X]};

def MixColumns(s : S) : S {
def r : S;
seq i := 0 to 3 { r[0..3,i] := mix * s[0..3,i]; }
return r; }

In addition to resolving the matrix size restrictions imposed by the matrix mul-
tiplication operation, our type system is able to individually type the finite field
literals in the matrix initialisation, and check that these types are compatible
with the type of the matrix contents. Note that this implies recognising that a
literal of type mod[2] is coercible to GF2N.

4 Formalisation of the CAO Type System

In this section, we will overview our formalisation of the CAO type system.
Since CAO is a relatively large language, only the most interesting features will
be covered. A full description of the CAO formalisation can be found in [1].

CAO Syntax. The formal syntax of CAO is presented in Fig. 1. To simplify
presentation we use † to represent a set of traditional binary operators, namely

† ∈ {+,−, ∗, /,%, ∗∗,&, ,̂ |,',(,@,==, ! =, <,>,<=, >=, ||,&&, ˆˆ}

www.manaraa.com

322 M. Barbosa et al.

Most of the binary operators are the same as their C equivalents, although
they are overloaded for multiple types. Worth mentioning are the multiplicative
exponentiation operator for integers, residue class groups and fields (∗∗); the
bit-wise conjunction (AND), inclusive- (IOR) and exclusive-disjunction (XOR)
operators (&, | and ˆ respectively); the shift operators for bit strings and vectors
(' and (); the concatenation operator for bit strings and vectors @; and the
boolean logic exclusive-disjunction (XOR) operator (ˆˆ).

Most of the language syntactic entities, and the accompanying syntax rules,
are also similar to C. Additional domains have been added to this basic set: some
for the sake of a clearer presentation, and others because they are part of CAO’s
domain specific character for cryptography.

4.1 CAO Type System

Function Classification. The type checker is able to automatically classify
CAO functions with respect to their interaction with global variables. The type
checking rules classify functions as either of the following three types:

Pure Functions. Do not depend on global variables in any way and can only
call other pure functions. These functions are, not only side-effect free, but
also return the same result in every invocation with the same input. This
property is often called referential transparency.

Read-Only Functions. Can read values from global variables, but they cannot
assign values to them. They can call pure functions and other read-only
functions, but not procedures. These functions are side-effect free.

Procedures. Can read and assign values from/to global variables. They can
call pure functions, read-only functions and other procedures.

For the CAO type checker, the most important distinction is that between pro-
cedures and other functions. Procedures are only admitted in restricted con-
texts, such as simple assignment constructions. This distinction is completely
automated in the type-checking rules that associate the following total order of
classifiers to CAO constructions: Pure < ReadOnly < Procedure

Put simply, the type checking system enforces the following rules: 1) A con-
struction depending only on local variables is classified as Pure; 2) When read-
ing the value of a global variable, the classifier is set to Read-only; 3) When a
global variable is used in an assignment target, the classifier is set to Procedure;
4) Expressions and statements procedures are classified with respect to their
sub-elements using the maximum operator defined over the total order specified
above. Note that this classification system is conservative in the sense that, for
example, it will fail to correctly classify a function as pure when it reads a global
variable but does not use its value.

Environments, Type Judgements and Conventions. We use symbol τ
(possibly with subscripts) to represent an arbitrary (fixed) data type. We write
x :: τ to denote that x has type τ . We use two distinct environments in our

www.manaraa.com

Type Checking Cryptography Implementations 323

type rules: the type environment relation Γ , which collects all the declarations
(e.g. variables, function, procedures) together with their associated types; and
the constant environment relation Δ, which records the values associated with
integer constants. The Γ environment is partitioned into two relations: ΓG for
global definitions and ΓL for local definitions. This distinction is important to
deal with symbol scoping and visibility when typing, for example function dec-
larations. Whenever this distinction is not important we will just write Γ to
abbreviate ΓG, ΓL. Notation Γ [x :: τ] is used to extend the environment Γ with
a new variable x of type τ , providing that x is not in the original environment
(i.e., x �∈ dom(Γ)). Similarly, Δ[x := n] is used to extend the environment Δ
with a new constant x with value n, also provided that x is not in the domain of
environment Δ. Notation Γ (x) and Δ(x) represent, respectively, the type and
the integer value associated with identifier x, assuming that x belongs to the
domain of the respective environment. Environments are built by order of decla-
ration in source code, implying that recursive declarations are not possible and
that function classifiers are already known when the functions are called.

We use symbol � for type judgement of expressions of the form Γ,Δ � e ::
(τ, c), retrieving type τ and functional classifier c associated to an expression.
Operator �β denotes type judgements of statements that may modify the type
environment relation: it retrieves not only a typed statement, but also a new
type environment relation. Subscript β (seen as a place-holder) in operator �β

represents the return type of the function in which the statement was defined.
This information is particularly useful, allowing the type checker to guarantee
that the several return statements that may appear in a function are always in
accordance with the return type of the corresponding function declaration.

Evaluation of Integer Expressions.We define a partial function φΔ to deal
with type parameters such as vector sizes that must be determined at compile
time. This function is used in typing rules to compute the integer value of a
given expression e in context Δ. If this value cannot be determined, then typing
will fail. This function is defined as follows

φΔ(n) = n φΔ(x) = Δ(x), x ∈ dom Δ

φΔ(−e) = −φΔ(e) φΔ(e1 † e2) = φΔ(e1) † φΔ(e2)

φΔ(e1 ∗∗ e2) = (φΔ(e1))
(φΔ(e2)) φΔ(e1 % e2) = φΔ(e1) mod φΔ(e2)

for † ∈ {+,−, ∗, /}. When evaluating integer expressions in typing rules, we write

. . . φΔ(e) = n . . .

Γ,Δ � . . .
to mean

. . . Γ,Δ � e :: (Int,Pure) φΔ(e) = n . . .

Γ,Δ � . . .

which implicitly implies that expression e is of integer type.

Data Types. In Sect. 2, types were informally described using CAO syntax for
type declarations. Here we will distinguish between a type declaration and the
type it refers to in our formalisation. We use upper case to indicate the CAO

www.manaraa.com

324 M. Barbosa et al.

Table 1. CAO data types

Bool Booleans
Int Arbitrary precision integers
UBits [i] Unsigned bit strings of length i
SBits [i] Signed bit strings of length i
Mod [n] Rings or fields defined by integer n
Mod [τ/pol] Extension field defined by τ/pol
Vector [i] of τ Vectors of i elements of type τ
Matrix [i, j] of α Matrices of i× j elements of type α ∈ A

A = {Int,Mod [m],Matrix [i, j] of α | α ∈ A}

data types shown in Table 1. An important difference is that the CAO grammar
allows any expression as a parameter of a type declaration, while CAO types
must have parameters of the correct type and with a fully determined value,
e.g., sizes must be integer values. In Table 1, A denotes the set of algebraic
types, which are the only ones that can be used to construct matrices. These are
types for which addition, multiplication and symmetric operators are closed. In
order to emphasise occurrences where the type must be algebraic, we will use α
(possibly with subscripts) instead of τ .

Type Translation. To deal with the type parameters informally described in
Sect. 1, we introduce a new judgement that makes the translation between type
declaration in the CAO syntax and types used in the type checking process. This
judgement, of the form Δ �t t τ , depends only on the environment Δ, which
can in turn be used to determine the values of expressions that only depend on
constants. This accounts for the fact that, during type checking, types must have
their parameters fully determined, while type declarations in CAO can depend
on arithmetic expressions using constants stored in the environment Δ. Hence
the translation judgement uses evaluation function φΔ to compute parameter
expressions in the declaration of bit string, vector and matrix sizes, ensuring
that no negative or zero sizes are used. The evaluation function is also used in
modular types with integer modulus to determine its value and ensure that it is
meaningful (i.e., greater than 1). We present only part of this definition below.

φΔ(e) = n

Δ �t unsigned bits [e] � UBits[n]
n ≥ 1

φΔ(e) = n

Δ �t mod [e] � Mod[n]
n ≥ 2

φΔ(e) = n Δ �t t � τ

Γ,Δ �t vector [e] of t � Vector [n] of τ
n ≥ 1

φΔ(e1) = n φΔ(e2) = m Δ �t t � α

Δ �t matrix [e1, e2] of t � Matrix [n,m] of α
α ∈ A, n ≥ 1, m ≥ 1

Type Coercions. Type coercions are essentially implicit (typically data pre-
serving) type conversions, whereby the programmer is allowed to use terms of
some type whenever another type is expected. In CAO, this mechanism is re-
markably useful, for example when dealing with field extensions (cf. the third

www.manaraa.com

Type Checking Cryptography Implementations 325

Table 2. Type coercion relation, �≤ t1 ≤ t2

t1 t2 Condition

UBits[n] Int
SBits[n] Int
τ Mod[τ ′/pol] �≤ τ ≤ τ ′

Vector[n] of τ1 Vector[n] of τ2 �≤ τ1 ≤ τ2
Matrix [i, j] of α1 Matrix [i, j] of α2 �≤ α1 ≤ α2 and α1, α2 ∈ A

Table 3. A few cases for the cast relation, �c t1 ⇒ t2

t1 t2 Condition

Int Bits [i]
Int Mod [n]
Vector [i] of τ1 Mod [τ2/pol] �c τ1 ⇒ τ2 and i = degree(pol)
Mod [τ1/pol] Vector [i] of τ2 �c τ1 ⇒ τ2 and i = degree(pol)
Matrix [1, j] of α Vector [j] of τ �c α ⇒ τ and α ∈ A
Vector [i] of τ Matrix [i, 1] of α �c τ ⇒ α and α ∈ A
Vector [i] of τ1 Vector [i] of τ2 �c τ1 ⇒ τ2
Matrix [i, j] of α1 Matrix [i, j] of α2 �c α1 ⇒ α2 and α1, α2 ∈ A

rule in Table 2), since a field can be seen as a subtype of all its field extensions.
In general, when a CAO type τ1 is coercible to another type τ2, then the set of
values in τ1 can be seen as a subset of the values in τ2. For example, all bit-
strings of a given size can be coerced to the integer type. We define a coercion
relation ≤, associated with a new kind of judgement �≤. Coercions are naturally
reflexive, and Table 2 summarises the other possible coercions.

Often the arguments of an operation have different types but are coercible to a
common type, or one is coercible to the other. In order to capture this situation,
we define the ↑ operator on types, which returns the least upper bound of the
types to which its arguments are coercible:

τ1 ↑ τ2 = min{τ | �≤ τ1 ≤ τ and �≤ τ2 ≤ τ}

This requires that the coercion relation ≤ is regarded as a partial order on types,
thus requiring the reflexivity, transitivity and anti-symmetry properties to hold.
As we have seen before, the coercion relation is reflexive; the transitivity and
anti-symmetry requirements are also easy to add and well suited to our intuitive
notion of coercion. With these properties in place, and for the particular set of
coercions allowed in CAO, we have that τ1 ↑ τ2 is always uniquely defined. In
typing rules, we therefore abbreviate the following pattern

. . . Γ,Δ � e :: τ1 �≤ τ1 ≤ τ2 . . .

Γ,Δ � . . .
by

. . . Γ,Δ � e ≤ τ2 . . .

Γ,Δ � . . .
.

Casts. The CAO language includes a cast mechanism that allows for explicitly
converting values from one type to another. However, not all casts are possible:

www.manaraa.com

326 M. Barbosa et al.

the set of admissible type cast operations has been carefully designed to account
for those conversions that are conceptually meaningful in the mathematical sense
and/or are important for the implementation of cryptographic software in a nat-
ural way. We define a type cast relation⇒, which is associated with a new kind of
judgment �c. Table 3 shows the part of the definition of the cast relation. Using
the cast relation, we only have to provide one typing rule for cast expressions.

�≤ τ1 ≤ τ2
�c τ1 ⇒ τ2

Δ �t t τ Γ,Δ � e :: (τ ′, c) �c τ ′ ⇒ τ

Γ,Δ � (t) e :: (τ, c)

The additional rule on the left is needed so that coercions can be made explicit,
which also implies that a certain type can be cast to itself.

Sizes of Bit Strings, Vectors and Matrices. Since type declarations are
mandatory and container types have explicit sizes, we can verify if operations
deal consistently with these sizes. Furthermore, the type system can feed this
information to subsequent components in the CAO tool chain.

For instance, the operation that concatenates two vectors should return a new
vector whose size is the sum of the sizes of the individual vectors, and whose
type is the least upper bound of the types of the two vectors, with respect to
the coercion ordering ≤:

Γ,Δ � e1 :: (Vector[i] of τ1, c1) Γ,Δ � e2 :: (Vector[j] of τ2, c2) τ1 ↑ τ2 = τ

Γ,Δ � e1 @ e2 :: (Vector[i+ j] of τ,max(c1, c2))

The concatenation of bit strings is similar. Moreover, in the case of matrix al-
gebraic operations, e.g. multiplication, the dimension of the matrices can be
checked for correctness.

When range selection is used over bit strings, vectors or matrices, we require
that the integer expressions must be evaluated at compile-time so that the size
of the expression, and therefore its type can be determined. In this case, the
limits of the range are compared against the bounds of the associated type. For
instance, for a range access to a vector we have:

Γ,Δ � e :: (Vector[k] of τ, c) φΔ(e1) = i φΔ(e2) = j

Γ,Δ � e[e1..e2] :: (Vector[j − i+ 1] of τ, c)
k > j, j ≥ i ≥ 0

This is also a limited form of dependent typing since the type associated with
the expression depends on the expression itself.

Rings, Finite Fields and Extensions. One of the most unusual features of
the CAO language is the support for ring and finite field types and their possible
extensions. Our type checking rules allow us to ensure that operations over values
of these types are well-defined and that values from different (instances of these)
types are not being erroneously mixed due to programming errors. For instance,
the typing rule for division is:

Γ,Δ � e1 :: (Mod [m1], c1)
Γ,Δ � e2 :: (Mod [m2], c2) Mod [m1] ↑ Mod [m2] = Mod [m]

Γ,Δ � e1 / e2 :: (Mod [m],max(c1, c2))

www.manaraa.com

Type Checking Cryptography Implementations 327

The use of the least upper bound captures the fact that the types may be equal,
or one may be an extension of the other.

Variables and Function Calls. The classification of expressions depends
on the environment accessed when retrieving the value of a variable. If a local
variable is accessed, the code is considered pure; if a global variable is read, the
code is classified as read-only.

ΓG(x) = τ

ΓG, ΓL,Δ � x :: (τ,ReadOnly)
x ∈ dom(ΓG)

ΓL(x) = τ

ΓG, ΓL,Δ � x :: (τ,Pure)
x ∈ dom(ΓL)

Since in expression, we can only use functions that do not cause side-effects, the
typing rule for function application has a side condition to ensure that the body
of the function is not a procedure (i.e., it does not modify a global variable):

ΓG(f) = ((τ1, . . . , τn)→ τ, c)
ΓG, ΓL, Δ � e1 ≤ (τ1, c1) . . . ΓG, ΓL, Δ � en ≤ (τn, cn)

ΓG, ΓL, Δ � f(e1, . . . , en) :: (τ,max(c, c1, . . . , cn))

max(c, c1, . . . , cn) < Procedure and f ∈ dom(ΓG)

Functions, Procedures and Statements. We introduce symbol • as a pos-
sible (empty) return type to detect misuses of the return statement. We distin-
guish the cases when a block has explicitly executed a return statement from
the cases where no return statement has been executed. In the former case we
take the type of the parameter passed to the return statement or • if no such
parameter exists. In the latter case we also use the • symbol. Thus, a return
statement is typed with the same type as its argument, which must coincide
with the expected return type for the block.

Γ,Δ � e1 ≤ (τ1, cc1) . . . Γ,Δ � en ≤ (τn, ccn)

Γ,Δ 	(τ1,...,τn) return e1, . . . , en :: ((τ1, . . . , τn),max(cc1, . . . , ccn), Γ)

Since CAO has a call-by-value semantics, returning multiple values is allowed in
order to make references or additional structures unnecessary.

The typing rule for a function definition therefore verifies if the type of its
body is not • to ensure that a return statement was used to exit the function.
Moreover, the returned type has to be equal (or coercible) to the declared type
(recall the use of judgement �τ).

The seq statement permits iterating over an integer variable varying between
two statically determined bounds. The index starts with the value of the lower
(resp. upper) bound and at each step is incremented (resp. decremented) by
the amount of the step value until it reaches the upper (resp. lower) bound.
The interesting feature of this mechanism is that the iterator is regarded as a

www.manaraa.com

328 M. Barbosa et al.

constant at each iteration step. In the typing rules, this allows us to add the
index and its respective value to the environment
Δ at each iteration:

φΔ(e1) = i φΔ(e2) = j ∀n∈{i...j}ΓG, ΓL[x :: Int], Δ[x := n] 	τ c :: (ρ, cc, Γ ′
G, Γ

′
L)

ΓG, ΓL,Δ 	τ seq x := e1 to e2 { c } :: (•, cc, ΓG, ΓL)

ρ ∈ {τ, •}, x
∈ dom ΓL, i ≤ j

Therefore, declarations and access expressions inside the body of the sequence
statement may depend on the index but may still be statically typeable. As high-
lighted in Sect. 3, the combination of range selection and assignment operators
for bit strings, vectors and matrices with this simplified loop construction is a
good example of how the CAO language design allowed us to fine tune the type
checker to provide extra assistance to the programmer. Note, however, that se-
quential statements can make the type checking process slow, as sequences must
be explicitly unfolded and typed for each possible value of the iterator.

A Detailed Example. We now present a detailed example of the how our type
system handles the hsalsa20 fragment introduced in Sect. 3. The syntactic form
of the program is

seq i := 0 to 3 {
x[i+1] := from_littleendian(k[i*4..i*4+3]);
x[i+6] := from_littleendian(in[i*4..i*4+3]);
x[i+11] := from_littleendian(k[i*4+16..i*4+19]); }

where we desire type annotations for each node in the parse tree. The inference
process traverses the tree matching rules against syntax. This traversal highlights
aspects of the inference at three levels in the tree. Before reaching this fragment
the declarations have already been produced and thus the initial environment is

ΓL = {k :: Vec[32] of UBits[8], in :: Vec[16] of UBits[8], x :: Vec[8] of UBits[32]}
ΓG = {to littleendian :: UBits[32] → Vec[4] of UBits[8],

from littleendian :: Vec[4] of UBits[8] → UBits[32]}
Δ = {}

The first step matches the entire fragment against seq i := 0 to 3 {s1; s2; s3}

∀n∈{0...3}ΓG, ΓL[i :: Int], Δ[i := n] �τ c :: (ρ, cc, Γ
′
G, Γ

′
L)

ΓG, ΓL, Δ �τ seq i := 0 to 3 {s1; s2; s3} :: (•, cc, ΓG, ΓL)

This entails, for each of the n ∈ {0, 1, 2, 3} cases, that for assignments (li:=ri) =
si in each of the s1, s2, s3 preconditions, each statement is matched by

Γn,Δn � li :: (τ, cl) Γn,Δn � ri ≤ (τ, c)

Γn,Δn 	τ li := ri :: (•,max(cl, c), Γ)

Here Γn = ΓG, ΓL[i :: Int] and Δn = Δ[i := n]. Now, for each of the li we obtain
something of the form x[i + 1] where ΓL(x) = Vec[8] of UBits[32] and an index
expression i+ 1 :: (Int,Pure), thus we can match

www.manaraa.com

Type Checking Cryptography Implementations 329

Γn,Δn � x :: (Vec[8] of UBits[32],Pure) Γn,Δn � i+ 1 ≤ (Int,Pure)

Γn,Δn � x[i+ 1] :: (UBits[32],max(Pure,Pure))

Finally, for each of the ri the function parameter ei is either ΓG[k] or ΓG[in] ::
Vec[16] of UBits[8], Furthermore, the index expression is defined only over i,
whose value is known, and integer literals. Thus each expression of the form
k[i ∗ 4..i ∗ 4 + 3] becomes a slice over determined indices after application of φΔ
and k[i ∗ 4..i ∗ 4 + 3] :: (Vec[4] of UBits[8],Pure). Hence

ΓG(from littleendian) = (Vec[4] of UBits[8] → UBits[32],Pure)

ΓG, ΓL, Δ1 � k[i ∗ 4..i ∗ 4 + 3] ≤ (Vec[4] of UBits[8],Pure)

ΓG, ΓL[i :: Int],Δ1 � from littleendian(k[i ∗ 4..i ∗ 4 + 3]) :: (UBits[32],max(Pure,Pure))

5 Implementation

The CAO type-checker was fully implemented in the Haskell functional language,
which provides a plethora of libraries and built-in features. Among these, we
found some to be particularly useful, such as classes, specific syntax for handling
monadic data types and the monad Error data type. These Haskell assets, not
only simplified the implementation process, but also helped improving substan-
tially the readability of the code and its comparison with the formal specification
of the type checking rules described in the previous section.

To generally illustrate Haskell’s ability to deal with the formal type checking
rules, consider the following code snippet, which implements the rule for type
checking while statements.

tcStatement s@(WhileStatement info cond wstms) h rt =
do (cond’, condt, cb) <- tcExp cond h
checkMatchType info condt Boolean
(wstms’, wst, cc, h’) <- tcStatements wstms h rt
return (mkWhileStatement (buildTcNodeInfo info Bullet)

cond’ wstms’, Bullet, max cb cc ,h)

The interpretation of the above code is quite immediate. Function tcStatement
is our formal statement type checking function �, rt represents the expected
return type, which in the formal definition subscripts � and h corresponds to
the type environments Γ and Δ. Note that, even though we have made clear the
distinction between Γ and Δ in the formal rules, this was mainly justified by
presentation reasons. Still on the arguments side, one finds (WhileStatement info
cond wstms), trivially matching while b {c}, except for the info identifier, which
is an add-on of the implementation for storing the exact place where the CAO
code being analysed appears in the input file.

Regarding the function body, in accordance to the formal rule, which relies
on premises referring to � and �, so does the implementation, referring to func-
tions tcExp and tcStatements respectively. Here, however, one resorts to Haskell’s
monadic operator <- over the monad Error data type. In this way we combine

www.manaraa.com

330 M. Barbosa et al.

calls to different type checking functions that may return type checking errors,
ensuring that if an error occurs in one of the calls, the error is propagated down
to the end of the type checker execution, without interfering with any other type
checking rule in between.

Function checkMatchType corresponds to our order comparison operator ≤
over data types, while Bullet is our functional representation of symbol •. Func-
tion max ensures that type classifiers, which allow the type system to recognise
various types of functions, are properly propagated. Instead of returning the
type of the expression being evaluated, the implementation returns the expres-
sion received annotated with its type, to be used by subsequent compilation
steps. Nevertheless, the above rule implementation illustrates how we have kept
the implementation reasonably close to the formal definition, therefore favoring
a direct validation by inspection of the implementation.

6 Soundness of the Type System

As usual, the CAO type system aims to ensure that “well-typed programs do
not go wrong” [7]. This is formalised as a soundness theorem relating static
(typing) and dynamic semantics. For the moment, our result only ensures that
the evaluation of well-typed program does not fall into a certain class of errors:
formally, we are proving a weak soundness theorem. Concretely, we have shown
that only a well-defined set of run-time errors (trapped errors, denoted by ε in the
semantic domainV) can occur when evaluating a correctly typed program. These
are explicitly captured in the semantics of the language, and they are limited to
divisions by zero and out of bounds accesses to containers. In this section, we first
shortly present some aspects of our formalization of the CAO semantics necessary
to provide support to the subsequent discussion of our soundness theorem and
proof sketch. The complete description of both can be found in [1].

CAO Semantics. Evaluation of a CAO program is defined by an evaluation
relation that relates an initial configuration (a CAO program together with a
description of the initial state) with a final configuration (a semantic value and
a final state). The domain of semantic values is defined as a solution of the
domain equation V = Z+V� + E , where Z denotes the domain of integers, V�

denotes sequences of values of type V of the form [v0, . . . , vn−1] and E is the type
of the trapped error value ε. A trapped error is an execution error that results
in an immediate fault (run-time error); an untrapped error is an execution error
that does not immediately result in a fault, corresponding to an unexpected
behavior. We denote such an error by ⊥.

We define three mutually recursive evaluation relations, each of them respon-
sible for characterising the evaluation of different syntactic classes: expressions,
statements and declarations :

– 〈 e | ρ 〉 → r evaluates expression e in state ρ to the value r. Expression
evaluation is side-effect free, and hence the state is not changed.

www.manaraa.com

Type Checking Cryptography Implementations 331

– 〈 c | ρ 〉 ⇒ 〈 r , ρ′ 〉 means that the evaluation of statement c in state ρ
transforms the state into ρ′, and (possibly) produces result r.

– 〈 d | ρ 〉 � 〈 ρ′ 〉 means that the evaluation of declaration d in state ρ
transforms the state into ρ′.

CAO has a call by value semantics, where there are no references and each vari-
able identifier denotes a value. Assignments mean that old values are replaced
by the new ones in the state. Since expressions are effect-free, simultaneous
value assignments are possible (however, here we will stick to the simpler single-
assignment version of the evaluation rule). In CAO, a run-time trapped error can
occur only in three cases: 1) accessing a vector, matrix or bit string out of the
bounds; 2) division (or remainder of division) by zero; and 3) assigning a value
to a vector, matrix or bit string out of bounds. We present example rules for the
latter two cases below, noting that the frame update operator is defined to return
ε when l identifies an update to an invalid index in a container representation.

Assign-Err

〈 e | ρ 〉 → v

〈 l := e | ρ 〉 ⇒ 〈 ε , 〉 ρ[v/l] = ε

Assign

〈 e | ρ 〉 → v

〈 l := e | ρ 〉 ⇒ 〈 • , ρ[r/l] 〉 ρ[v/l]
= ε

Div

〈 e1 | ρ 〉 → v1 〈 e2 | ρ 〉 → v2

〈 e1 / e2 | ρ 〉 → [[/]][v1, v2]

Div-Zero

〈 e1 | ρ 〉 → v1 〈 e2 | ρ 〉 → 0

〈 e1 / e2 | ρ 〉 → ε

where function at returns the n-th element of a sequence. Range accesses actually
cannot cause trapped errors, as the type system enforces that the limits must
be statically defined in order to determine the size of the result, which means
that such errors can be detected. Trapped errors are propagated throughout
evaluation rules, i.e., whenever a premiss evaluates to ε the overall rule also
evaluates to ε. All cases that fall outside of our semantic rules are implicitly
evaluated to untrapped errors (⊥ value).

Soundness Theorem and Proof Sketch. Our result is stated in the following
theorem, where � ρ :: ΓG denotes consistency and ◦ denotes empty store/state.

Theorem 1. Given a program p if ◦, ◦, ◦ � p :: (•, ΓG) and 〈 p | ◦ 〉 � 〈 ρ 〉
terminates, then � ρ :: ΓG or ρ is an error state.

Proof (Sketch). The full proof is presented in [1]. The proof is by induction on
typing derivations. The base case for induction is that prior to execution, every
type-checked program has an initial evaluation environment that is (trivially)
consistent with the typing environment. Here, consistency means that all vari-
ables in the evaluation environment have associated values compatible with their
corresponding type in the typing environment. The inductive cases are consid-
ered for each transition defined in the semantics of the language. In each case
we show that one of two cases can occur: 1) either a consistent environment

www.manaraa.com

332 M. Barbosa et al.

is produced at the end of each transition; or 2) a trapped error has been gen-
erated and is returned by the program. We present two cases, illustrating how
the proof proceeds for division expressions and assignment statements that may
raise trapped errors.

Division Expressions. We have to prove that if 〈 e1 / e2 | ρ 〉 → v terminates
then v ∈ V. Two semantic rules can be applied for each operator, one in the
case of division by 0; the other in the general case:

– If 〈 e1 | ρ 〉 → v1 and 〈 e2 | ρ 〉 → 0 terminate, then 〈 e1/e2 | ρ 〉 evaluates
to ε ∈ V by semantic Div-Zero.

– If 〈 e1 | ρ 〉 → v1 and 〈 e2 | ρ 〉 → v2 terminate, with v2 �= 0, then 〈 e1/e2 | ρ 〉
evaluates to [[/]][v1, v2] by semantic rule Div. Here [[/]] gives the interpreta-
tion of the / operator with respect to the values v1 and v2. By induction
hypothesis, v1 and v2 are in the semantic domain V, corresponding to rep-
resentations of integer values. Since division is well-defined for integer rep-
resentations, then [[/]][v1, v2] evaluates to another value v which is again a
representation of an integer and v ∈ V\E .

Assignment Statements. We have to prove that if 〈 l := e | ρ 〉 ⇒ 〈 v , ρ′ 〉
terminates then, either the statement raises a trapped error due to an invalid
access on the left value, or the returned environment ρ′ is consistent with the
typing environment. Two semantic rules are applicable, Assign and Assign-

Err, the latter only when the target is an invalid position in a container. If
〈 e | ρ 〉 → v terminates, then v ∈ V\E and v represents a value of type τ . The
semantic rule to apply depends on the result of the frame update operation ρ[v/l].
If this returns ε, then semantic rule Assign-Err is applied, and the statement
evaluates to 〈 ε , 〉. Otherwise it will return an updated state ρ′, in which case
semantic rule Assign is applied, and the statement evaluates to 〈 • , ρ[v/l] 〉.
It remains to prove that this resulting evaluation environment is consistent with
the typing environment. Here we resort to the induction hypothesis � ρ :: Γ ,
which guarantees the value currently stored for l represents a value of type τ .
Since v also represents a value of type τ , the update of left value l for value v
preserves consistency.

7 Related Work

Cryptol [5] is a domain-specific language and tool suite developed for the speci-
fication and implementation of cryptographic algorithms. It is a functional DSL
without global state or side-effects, which was developed with the main purpose
of producing formally verified hardware implementations of symmetric crypto-
graphic primitives such as block ciphers and hash functions. CAO is an impera-
tive language that targets a wider application domain, although also restricted to
cryptography. Indeed, the CAO language features have been designed to permit
expressing, not only symmetric but also asymmetric cryptographic primitives, in
a natural way. Furthermore, CAO tools are released under an open-source policy.

www.manaraa.com

Type Checking Cryptography Implementations 333

Dependent types offer a powerful approach to ensure program properties.
However, this power in not incorporated in any of the mainstream languages,
while the prototypical languages that do it are mostly functional. The first proto-
type of an imperative language to use dependent types was Xanadu [9], allowing,
e.g., to statically verify that accesses to arrays are within bounds. So far, CAO
offers a modest form of dependent types, where all type parameters values must
be statically known. Ongoing work aims extend CAO with a more powerful ap-
proach to dependent types inspired by [9]. This new version of the type system
allows for symbolic parametrisation, dropping the requirement that all sizes are
known at compilation, using an SMT solver to handle associated constraints.

The use of Generalized Algebraic Data Types (GADTs) in Haskell, together
with type families and existential types, allows the implementation of embedded
DSL’s with some dependent typing features. Moreover, since this approach relies
on Haskell’s type system, this permits avoiding the full implementation of a type
checker. CAO does not follow this embedded approach because it would make it
harder to preserve characteristics of the language that pre-dated formal work on
the type system. For example, the CAO syntax tries to follow the cryptographic
specification standards, and GADTs would impose their own syntax, which is
more suitable for building combinator systems. One could of course try to use
a GADT-based intermediate representation, but it is not clear that this would
pay out in terms of the global implementation effort. In particular, we anticipate
that dealing with coercions and casts would complicate the type checking appa-
ratus [8]. Moreover, it would probably be difficult using an embedded approach
to keep the implementation structure close to the formal specification.

The use of an embedded implementation in a dependently typed language, e.g.
Coq or Agda, could also be an option for the implementation of our type sys-
tem. However, this would suffer from the same drawbacks previously presented
for GADTs, and would also require specific expertise that are not realistic to
assume in the target audience for CAO. The need to reason about the correct-
ness and termination of CAO programs at this level would also be an overkill for
most applications. In the CAO tool-chain, this sort of analysis is enabled by an
independent deductive formal verification tool called CAOVerif.

8 Conclusion

CAO is a language aimed at closing the gap between the usual way of speci-
fying cryptographic algorithms and their actual implementation, reducing the
possibility of errors and increasing the understanding of the source code. This
language offers high-level features and a type system tailored to the implemen-
tation of cryptographic concepts, statically ruling out some important classes of
errors. In this paper, we have presented a short overview of CAO and the specifi-
cation, validation and implementation of a type-system designed to support the
implementation of front-ends for CAO compilation and formal verification tools.

www.manaraa.com

334 M. Barbosa et al.

References

1. Barbosa, M., Moss, A., Page, D., Rodrigues, N.F., Silva, P.F.: Type checking
cryptography implementations. Tech. Rep. DI-CCTC-11-01, CCTC, Univ. Minho
(2011)

2. Bernstein, D.J.: The Poly1305-AES Message-Authentication Code. In: Gilbert,
H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Hei-
delberg (2005)

3. Bernstein, D.J.: Cryptography in NaCl (2009), http://nacl.cr.yp.to
4. Jonsson, J., Kaliski, B.: Public-Key Cryptography Standards (PKCS) #1: RSA

Cryptography Specification Version 2.1 (2003)
5. Lewis, J.: Cryptol: specification, implementation and verification of high-grade

cryptographic applications. In: FMSE 2007, p. 41. ACM (2007)
6. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog-

raphy. CRC Press, Inc., Boca Raton (1996)
7. Milner, R.: A theory of type polymorphism in programming. Journal of Computer

and System Sciences 17, 348–375 (1978)
8. Silva, P.F., Oliveira, J.N.: ’Galculator’: functional prototype of a Galois-connection

based proof assistant. In: PPDP 2008, pp. 44–55. ACM (2008)
9. Xi, H.: Imperative programming with dependent types. In: LICS 2000, pp. 375–387.

IEEE Computer Society (2000)

http://nacl.cr.yp.to

www.manaraa.com

Intentional Automata: A Context-Dependent

Model for Component Connectors

(Extended Abstract)

David Costa1,4, Milad Niqui1, and Jan Rutten1,2,3

1 CWI, Amsterdam
2 VUA, Amsterdam
3 RUN, Nijmegen

4 Fredhopper, Amsterdam,
The Netherlands

1 Introduction

In recent years, a promising line of research on formal compositional models for
component connectors [3–6, 8, 9] has demonstrated the merits of having connec-
tors as first class concepts, and incrementally increased the expressiveness of the
interaction protocols that can be captured compositionally. Typically, in these
models connectors are entitled to have their own specification and abstractions.
Through composition, just like components, connectors can be combined and
yield more sophisticated connectors. The models provide an abstract semantic
domain to express interaction protocols, provide operations on the domain, and
a behavioural equivalence relation of interest that identifies elements of the do-
main. Special elements of the domain are chosen to specify basic interaction
protocols and correspond to the behaviour of so-called primitive connectors.
Bruni et al. [8] consider four rather simple stateless primitive connectors, that
essentially model synchronisation, mutual exclusion and hiding. The obtained
model allows to build a wide range of coordination connectors. For instance,
they are expressive enough to model the multiple-action synchronisation mech-
anism of CommUnity [11] which uses complex architectural connectors. Arbab
and Rutten [3] and Baier et al. [4] consider in their models three additional prim-
itive connectors: FIFO buffers, non-deterministic merger, and lossy channel; and
define elegant compositional operational semantics for a large class of Reo con-
nectors. In particular, both these models are refined enough to differentiate the
behaviour of non-deterministic Reo connectors that in dataflow models, such as
Kahn networks, lead to the so-called Brock-Ackerman anomalies [7]. Clarke et
al. [9] consider an additional primitive, the LossySync channel, and proposed
the colouring semantics as the first compositional model for context-dependent
connectors. Context-dependency is a feature that extends the class of dataflow
behaviour that connectors can express by including behaviour that depends on
the presence or absence of pending I/O operations—an I/O operation present
on a port. The observation of pending I/O operations permits to express in the
model non-monotonic behaviour such as precedence and blocking—referred to
as context-dependent behaviour. More recently Bonsangue et al. [6] proposed

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 335–342, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

336 D. Costa, M. Niqui, and J. Rutten

an alternative model for context dependent-connectors based on guarded au-
tomata. The class of context-dependent behaviour captured compositionally by
their models is similar to the colouring semantics, but because guarded automata
can be partial, deficiencies identified in the colouring semantics that arise due
to the totality of colouring tables not being preserved under composition, are
avoided. In the context of service orchestration, Barbosa et al. [5] define a compo-
sitional calculus in the Bird andMeertens style where Reo-like context-dependent
connectors can be modelled compositionally and show that their expressiveness
permits to capture non-trivial orchestration protocols.

In this paper we contribute to that same line of research, and propose models
for context-dependent connectors that permit to capture compositionally a larger
class of context-dependent behaviour. Our contributions are:

1) The definition of intentional automata, and an operational semantics based
on observational equivalence à la Milner, to reason compositionally about
context-dependent connectors. The semantics permit to express composi-
tionally a class of dataflow priority and dataflow blocking behaviour that
includes the intended behaviour of the LossySyncFIFO1 channel, and unlike
all the previous models, includes context-dependent connectors constructed
with multiple FIFO1 channels, like the LossySyncFIFO2 channel.

2) The identification of a particular class of intentional automata, called Reo au-
tomata, resulting from the axiomatisation of a Reo connector port.

3) A definition that captures the intentional automata that model context-
dependent behaviour and characterises context-dependent connector.

These results have been obtained in the context of Costa’s PhD research and
recently detailed in his thesis [10]. In this paper due to size limitations, we
skip the technical details and give an overview of the results, and for a detailed
account we refer the reader to the thesis.

2 Preliminaries

We assume a set {A,B,C, . . .} of names that we denote by Names . A connector
is viewed as a black box with a well-defined interface that corresponds to the
collection of communication ports, Σ ⊆ Names , through which the connector
interacts with its environment. Given a connector C with a set of ports Σ, the
different ways that the environment can interact with C are given by the set
of requests R = P(Σ). For a request-set R ∈ R, every port in R has a request,
whereas there are no requests on ports in Σ\R. For instance, consider a connector
with a set of ports Σ = {A,B}. The set P({A,B}) contains all the request-sets
the environment can perform on Sync. The empty request-set ∅ denotes that
none of the ports of the connector receives a request from its environment. The
request-set {A} denotes that a request is present on port A, and no request is
present on port B. The request-set {A,B} denotes that a request is present on
port A and another one is present on port B simultaneously. A connector C
processes one request-set at a time, and in response produces a (possibly empty)

www.manaraa.com

Intentional Automata 337

Sync LossySync AsyncDrain FIFO1 FIFO1(x)

q0

A,B|A,B

q0

A|A
+

A,B|A,B

q0

A|A + B|B
qe qf

A|A

B|B

Fig. 1. Reo channel types and their intentional automata models

firing-set F ⊆ Σ. The set of all firing-sets P(Σ) is denoted by F. For example,
the empty firing-set ∅ denotes quiescence—no firing at any of the ports. The
firing-set {A,B} denotes the simultaneous firing of ports A and B. A (possibly
empty) request-set is related to a (possibly empty) firing-set.

We use Reo as our reference language to build connectors. Reo is a coordina-
tion language based on a calculus of channel composition to construct component
connectors. Due space limitations we refer the reader to the paper by Farhad [1]
for an introduction on Reo.

Figure 1 contains some common Reo channel types. Sync denotes a syn-
chronous channel. Data flows through this channel if and only if it is possible
to synchronously accept data on one end and pass it out through the other end.
LossySync denotes a lossy synchronous channel. If a take is pending on the sink
end of this channel and a write is requested on its source end, then the channel
behaves as a synchronous channel. However, if no take is pending, the write fires,
and the data is lost. Observe that this channel has context-dependent behaviour,
as it behaves differently depending upon whether there is a take pending on its
sink end—if it were context independent, the data could be lost regardless of
whether its sink end has or does not have a take pending. AsyncDrain denotes
an asynchronous drain. Data can flow into only one end of this channel at the
exclusion of data flow at the other end. FIFO1 denotes an empty FIFO with
one buffer cell. Data can flow into the source end of this buffer, but no flow is
possible at its sink end (since its buffer is empty). After data flow into the buffer
cell, it becomes a full FIFO. FIFO1(x) denotes a full FIFO with one buffer cell
occupied by the data value x. Data value x can flow out of the sink end of this
buffer, but no flow is possible at the source end (since its buffer is full). After x
flows out of the buffer, it becomes an empty FIFO.

3 Intentional Automata

To model a connector with an intentional automaton one can think of an abstract
state machine, where each state corresponds to a possible configuration of the
connector and the transitions indicate the experiments that take the connector
from one configuration to another, not necessarily different, configuration.

www.manaraa.com

338 D. Costa, M. Niqui, and J. Rutten

Definition 1 (intentional automata). A non-deterministic intentional au-
tomaton over the set of ports Σ is a system A = (Q,Σ, δ, I), with a set of
states Q; a transition function δ : Q → P(F × Q)R that associates for every
state q ∈ Q, a function δq ∈ R −→ P(F × Q), where R are the requests of A
and F are the firings of A, and a non-empty set of initial states I ⊆ Q.

The transition function δ assigns to each state q ∈ Q the behaviour given by a
function δq : R −→ P(F ×Q). For each request-set R ∈ R, δq maps R to a set of
responses in P(F ×Q). Whenever the behaviour of a state q is undefined for a
particular request-set R, δq(R) = ∅, and we write δq ⇑ R. Whenever I = Q we
simply write A = (Q,Σ, δ) to denote the intentional automaton A = (Q,Σ, δ, I).

−→ Transition Relation. The transition function of the non-deterministic in-
tentional automata δ : Q −→ P(F × Q)R can be equivalently represented by a

relation −→⊆ Q× R× F ×Q defined by: q
R|F−−→ q′ ≡ (F, q′) ∈ δq(R).

Internal Transitions. Internal steps (or internal activity) of a connector account
for the non-observable activity of a connector and are modelled in the automata
by internal transitions. Internal activity in the connector takes place without
involving the ports of the connector. An internal transition allows the automaton
to change from a state q to state q′ when no requests are present in the ports of
the connector and as a result no ports of the connector are fired.

Definition 2 (internal transition). We call a transition of type q
∅|∅−−−→ q′,

with q �= q′, an internal transition.

Labelled Transition Diagram. A labelled transition diagram for an intentional
automaton A = (Q,Σ, δ, I) has its vertices labelled by the states q ∈ Q; there is
a directed edge represented with an arrow labelled R | F from the vertex labelled
q to the vertex labelled q′ precisely when δq(R) = (F, q′) The initial states are
distinguished by an inward-pointing arrow. If R1|F1, . . . , Rn|Fn label n edges
from the state q to the state q′ then we simply draw one arrow from q to q′

labelled R1|F1 + . . . + Rn|Fn instead of n arrows labelled R1|F1 to Rn|Fn. We
omit the delimiting set of brackets of the request-set R and firing-set F when
labelling an edge. Irrespective of the direction of arrows, the label R|F reads

always from left to right: the two edges q
A,B|A−−−−→ q′ and q′

A,B|A←−−−− q both depict
the transition δq({A,B}) = ({A} , q′).

Figure 1 contains the intentional automata models for some Reo channel types.

3.1 Connector Equivalence and Operations on Automata

Like in constraint automata we use bisimulation as equivalence relation [10,
Def. 4.2.2, p. 78]). Unlike constraint automata we use weak-bisimulation as ob-
servational equivalence [10, Def. 4.2.7, p. 79]) and show that it is a congru-
ence with respect to the operations. The main reason to consider observational
equivalence is because we consider internal transitions in the model. In constraint

www.manaraa.com

Intentional Automata 339

automata, all the transitions are observable and the hiding operation that re-
moves hidden ports also eliminates what could be interpreted as internal
transitions (transitions labeled with an empty set of ports).

We define three operations on intentional automata to model compositionally
composite connectors [10, Section 4.3]): product, hiding, and internal transitions
elimination. The product operation on intentional automata, like in constraint
automata, follows the standard construction for building finite automata for in-
tersection. It also has similarities with composition operators of process algebra,
namely, the parallel composition of labelled transition systems with synchroni-
sation over common actions and interleaving over other actions, as in TCSP [18].
The hiding operation on constraint automata performs two separate construc-
tions: (a) it removes all information about the hidden port; (b) it performs the
elimination of the transitions labelled only with the hidden port. The hiding op-
eration on intentional automata performs also two separate constructions: (i) it
removes all information about the hidden port; (ii) it prioritises the transitions
in which the hidden port has a request and fires, over the transitions in which
the hidden port has a request but does not fire. Construction (i) is similar to
(a), whereas construction (ii) has no counterpart in constraint automata. Con-
struction (b) is not performed by the hiding operation on intentional automata.
In intentional automata, the transitions labelled only by hidden ports become
internal transitions. The internal transition in intentional automata are elim-
inated by performing a construction similar to construction (b) on constraint
automata; and both are similar to the elimination of ε-transitions in ordinary
non-deterministic finite automata. Construction (ii) represents the main differ-
ence between the operations on the two automata models. In fact, construction
(ii) uses information present only in intentional automata transitions regard-
ing requested I/O operations, and based on this information, it prioritises the
transitions. We opted for having a dedicated operation to eliminate the internal
transitions and separate it from the hiding operation mainly because it makes
the definition of the hiding operation easier to write, and makes more clear the
parallel between the operation to eliminate internal transitions on intentional
automata, with the operation to eliminate epsilon transitions from the classical
theory of Finite Automata.

4 Reo Automata

Using properties that characterise how Reo ports interact with their environ-
ment we can restrict the large class of connectors that intentional automata
models to the class of models that captures Reo connectors behaviour. In this
particular class, it helps to think of states as having a structure according to the
configuration of a Reo connector. A connector configuration is partitioned into
two parts: the internal configuration and the external configuration. An internal
configuration is an abstract representation of the internal memory of the con-
nector. An internal configuration is denoted by an element s ∈ S, where S is the
set of all internal configurations of the connector. The external configuration of

www.manaraa.com

340 D. Costa, M. Niqui, and J. Rutten

a connector describes the status of the connector’s interface and is denoted by
a set P ⊆ Σ, where Σ is the set of ports of the connector. The intuition is that
in a given configuration (s, P), the set P indicates the ports of the connector
that have a pending request. We shall refer to these as pending ports. These are
ports that have received a request in previous evaluation steps and for which the
request has not been handled until now. Obviously, if a port is not in P , then
this port has no pending requests.

Definition 3 (connector configuration). Consider a connector with a set
of internal configurations S and a set of ports Σ. A configuration is a pair
(s, P) consisting of an internal configuration s ∈ S and an external configuration
P ⊆ Σ. The set of all configurations of the connector is given by S×P(Σ). Given
a configuration (s, P), we say p is a pending port or port p has a pending
request if p ∈ P . All the configurations of a connector are initial, unless a subset
of configurations I ⊆ S × P(Σ) is defined as initial.

Recall the transition relation of intentional automata, −→⊆ Q× R× F ×Q.
We define the set of states Q as the set of configurations S × P(Σ). A transi-

tion (s, P)
R|F−−→ (s′, P ′) models an evaluation step of a connector. The connec-

tor changes from configuration (s, P) to configuration (s′, P ′) by evaluating the
request-set R and producing the firing-set F .

Ports in Reo connectors interact in a particular manner with the environment,
which allows us to infer important axioms for the evaluation steps of automata
models for Reo connectors [10]:

♥ in a given configuration, a connector takes each pending port (p ∈ P) and
requested port (p′ ∈ R), and either fires it (p ∈ F and/or p′ ∈ F) or keeps
it pending (p ∈ P ′ and/or p′ ∈ P , accordingly): P ∪R = F ∪ P ′.

♣ a port p ∈ P (p is pending) implies p /∈ R (p cannot receive a request):
P ∩R = ∅.

♦ a port that fires cannot become/remain pending: F ∩ P ′ = ∅.

The Reo connectors from the literature are expressive and constitute an interest-
ing class to study. These connectors have an additional axiom: None of the Reo
connector specifications distinguishes between the set of pending ports and the set
of requested ports when deciding which ports to fire. Considering an evaluation
step of an automaton model for a Reo connector, this translates to the follow-
ing property: δ(s, P)(R) = δ(s, ∅)(R ∪ P). This property together with ♣ imply

an additional property that characterises the transition function δ for automata
models of Reo connectors present in the literature:

♠ δ(s,P)(R) =

{
δ(s,∅)(R ∪ P) if R ∩ P = ∅
∅ otherwise

Consider a firing-set that involves multiple ports. By property ♥, the environ-
ment must perform requests on these ports before they can fire. Property ♠ says
that the firing is produced independently of the order in which the environment

www.manaraa.com

Intentional Automata 341

executes the requests on the ports that subsequently fire. Therefore we can iden-
tify the different ordering possibilities as a single one and reduce the complexity
of the model. The Reo connectors enjoy properties ♥, ♠, and ♦.

Definition 4 (Reo automata). Consider a connector C with ports Σ, internal
configurations S, and a set of initial configurations I ⊆ S × P(Σ). A Reo au-
tomaton for C is a non-deterministic intentional automaton AC = (Q,Σ, δ, I)
with states Q = S × P(Σ) and transition function δ : Q → P(F × Q)R that
associates with every state q = (s, P) a function δq : R −→ P(F ×Q) such that:

♥ ♦ 〈F, (s′, P ′)〉 ∈ δ(s, P)(R) =⇒ P ∪R = F ∪ P ′ and F ∩ P ′ = ∅

♠ δ(s, P)(R) =

{
δ(s, ∅)(R ∪ P) if R ∩ P = ∅
∅ otherwise

We write C = (S,Σ,AC) to denote a connector with name C, ports Σ, internal
configurations S, and semantics given AC = (Q,Σ, δ, I) where Q = S × PΣ.

In a Reo automaton, it follows from properties ♥ ♦ and ♠ that for each inter-
nal (memory) configuration s the transitions from the state (s, ∅) are enough to
characterise the transitions of all states of the form (s, P). Furthermore, for any

transition of the form (s, ∅) R|F−−→ (s, P) we have that R = F ∪ P and F ∩ P = ∅.
Properties ♥ ♦ and ♠ make it possible to turn a partial intentional automa-

ton that defines only the transition function for the states of the form (s, ∅)
into a fully specified intentional automaton. To represent a partial intentional
automaton that specifies the transition function only for states of the form (s, ∅)
we define a concise tabular representation called configuration table.

Reo automata encode in each transition the context in which a firing occurs.
With this information in the model we can define and precisely characterise
context-dependent connectors like the LossySync.

(l, ∅) (l, {B})

(l, {A})

(l, {A,B})

B|∅A|A

A,B|A,B

A|A,B

∅|A+B|A,B

∅|A,B

Fig. 2. The labelled transition diagram of ALossySync

Definition 5 (context-dependent connector). Consider a Reo connector
C = (S,Σ,A). For each state (s, P) in A = (Q,Σ, δ) we calculate the set:

Φ(s,P) = {F | ∃R, q s.t. (s, P)
R|F−−−−→δ q, F �= ∅}.

C is a context-dependent connector if for some s ∈ S, there is a pair of different
states (s, P1), and (s, P2) such that Φ(s,P1) �= Φ(s,P2).

www.manaraa.com

342 D. Costa, M. Niqui, and J. Rutten

Consider the LossySync Reo automata model depicted in Figure 2 we have
Φ(l,∅) = {{A} , {A,B}} and Φ(l,{B}) = {{A,B}}. Hence, because Φ(l,∅) �= Φ(l,{B}),
by definition 5 LossySync is a context-dependent connector.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3), 329–366 (2004)

2. Arbab, F., Chothia, T., van der Mei, R., Meng, S., Moon, Y.J., Verhoef, C.:
From Coordination to Stochastic Models of QoS. In: Field, J., Vasconcelos, V.T.
(eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 268–287. Springer, Heidelberg
(2009)

3. Arbab, F., Rutten, J.J.M.M.: A Coinductive Calculus of Component Connectors.
In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755,
pp. 34–55. Springer, Heidelberg (2003)

4. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by Constraint Automata. SCP 61(2), 75–113 (2006)

5. Barbosa, M.A., Barbosa, L.S.: A perspective on service orchestration. SCP 74(9),
671–687 (2009)

6. Bonsangue, M., Clarke, D., Silva, A.: Automata for Context-Dependent Con-
nectors. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS,
vol. 5521, pp. 184–203. Springer, Heidelberg (2009)

7. Brock, J.D., Ackerman, W.B.: Scenarios: A model of non-determinate computation.
In: Dı́az, J., Ramos, I. (eds.) Formalization of Programming Concepts. LNCS,
vol. 107, pp. 252–259. Springer, Heidelberg (1981)

8. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors.
TCS 366(1-2), 98–120 (2006)

9. Clarke, D., Costa, D., Arbab, F.: Connector Colouring I: Synchronisation and
Context Dependency. SCP 66(3), 205–225 (2007)

10. Costa, D.: Formal Models For Component Connectors. Ph.D. thesis, VUA (2010),
http://dare.ubvu.vu.nl/handle/1871/16380

11. Fiadeiro, J.: Categories for Software Engineering. Springer, Heidelberg (2004)
12. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-

mun. ACM 35(2), 97–107 (1992)
13. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,

Languages, and Computation, 3rd edn. Addison-Wesley LP Co., Inc. (2006)
14. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc. (1989)
15. Park, D.: Concurrency and Automata on Infinite Sequences. In: Deussen, P. (ed.)

GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)
16. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIG-

SOFT Softw. Eng. Notes 17, 40–52 (1992)
17. Shaw, M.: Procedure Calls are the Assembly Language of Software Interconnec-

tion: Connectors Deserve First-Class Status. In: Lamb, D.A. (ed.) ICSE-WS 1993.
LNCS, vol. 1078, pp. 17–32. Springer, Heidelberg (1996)

18. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A Theory of Communicating Sequen-
tial Processes. J. ACM 31(3), 560–599 (1984)

http://dare.ubvu.vu.nl/handle/1871/16380

www.manaraa.com

Nested Dynamic Condition Response Graphs

Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats�

IT University of Copenhagen, Rued Langgaardsvej 7, 2300 Copenhagen, Denmark
{hilde,rao,tslaats}@itu.dk

Abstract. We present an extension of the recently introduced declarative pro-
cess model Dynamic Condition Response Graphs (DCR Graphs) to allow nested
sub-graphs and a new milestone relation between events. The extension was de-
veloped during a case study carried out jointly with our industrial partner
Exformatics, a danish provider of case and workflow management systems. We
formalize the semantics by giving first a map from Nested to (flat) DCR Graphs
with milestones, and then extending the previously given mapping from
DCR Graphs to Büchi-automata to include the milestone relation.

1 Introduction

Declarative process models have been suggested by several research groups [1–5, 15,
16, 18, 19] as a good approach to describe case management and other non-rigid busi-
ness and workflow processes where it is generally allowed to redo or skip activities,
and even dynamically adapt the set of activities and constraints. The rationale is that
if a strict sequencing is the exception, then the implicit specification of control flow in
declarative models is more appropriate than notations based on explicit control flows
such as the (typical use of) Business Process Model and Notation (BPMN) 2.0 [13].

A drawback of the declarative approaches in general, however, is that the implicit
definition of the state and control flow makes it more complex to perceive the state and
execute the process. To find out what are the next possible activities it is necessary to
evaluate a set of constraints defined relatively to the history of the execution.

This motivates finding an expressive declarative process language that allows for a
simple run-time scheduling which is easily visualized for the case worker. As a candi-
date for such a language we recently introduced in [7, 11] a declarative process model
called Dynamic Condition Response Graphs (DCR Graphs). The model is a general-
ization of the classic event structure model for concurrency [20] and is inspired by the
Process Matrix model [10, 12] developed by one of our industrial partners Resultmaker,
a Danish provider of workflow and case-management systems.

The core DCR Graphs model consists of a set of events and four binary relations
between the events: The dynamic inclusion and dynamic exclusion relations, and the
condition and response relations. The dynamic inclusion and exclusion relations gen-
eralize the usual symmetric conflict relation of event structures by splitting it in two

� This research is supported by the Danish Research Agency through a Knowledge Voucher
granted to Exformatics (grant #10-087067, www.exformatics.com), the Trustworthy Pervasive
Healthcare Services project (grant #2106-07-0019, www.trustcare.eu) and the Computer Sup-
ported Mobile Adaptive Business Processes project (grant #274-06-0415, www.cosmobiz.dk).

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 343–350, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

344 T. Hildebrandt, R.R. Mukkamala, and T. Slaats

asymmetric relations: If an event A excludes an event B, written A →% B, then B
can not happen until after the occurrence of an event C that includes event B, which is
written C →+ B. Similarly, the condition and response relations generalize the usual
causal order relation of event structures by splitting it in two relations: If an event B has
event A as condition, written A →• B, then event A must either be currently excluded
or have happened for B to happen. Dually, if an event A has event B as response, written
A •→ B, then event B must eventually happen or always eventually be excluded after
an occurrence of event A. To express that events are executed by actors with different
roles the core model is extended with roles assigned to the events.

In [7] we show that the run-time state of DCR Graphs can be represented as a mark-
ing consisting of three sets of events, recording respectively the executed events, the
currently included events, and the pending response events, i.e. events that must even-
tually happen or be excluded. From the marking, it is easy to evaluate if an event can
happen (by checking if all its conditions are either executed or excluded) and to verify
if the graph is in a completed state (by checking if the set of included pending responses
is empty). It is also easy to update the state when executing an event by adding it to the
set of executed events, remove the event from the pending response set and add new re-
sponse events according to the response relation, and include/exclude events in the set
of currently included events according to the include/exclude relations. In [7, 11] we
express the acceptance condition for infinite runs (no pending response is continuously
included without being executed) by giving a map to a Büchi automaton.

In the present paper we describe how to extend the model to allow for nested sub-
graphs as is standard in most state-of-the art modelling notations. The work was carried
out during a case study, in which we are applied Nested DCR Graphs in the design phase
of the development of a distributed, inter-organizational case management system car-
ried out by our industrial partner, Exformatics, a company that specializes in solutions
for knowledge sharing, workflows and document handling.

Fig. 1. Nested DCR Graphs with Arrange meeting sub-graph

Fig. 1 shows the
graphical notation for
nested DCR graphs
and illustrates the use
of nested sub-graphs
in a sub part of the
model arising from
our case study. The
Arrange meeting event
represents the arrange-
ment of a meeting be-
tween two of the organizations (DA and LO) using the distributed case management
system being developed. It has been refined to a sub-graph including four sub events
for proposing and accepting dates for the meeting. The dashed boxes indicate that the
events Accept DA and Accept LO for accepting meeting dates are initially excluded.
Described briefly, when the organization (U) creates a case, it triggers as a response the
event Propose dates-LO, representing LO proposing dates for a meeting. This event
triggers as a response and includes the event Accept DA, representing DA accepting

www.manaraa.com

Nested Dynamic Condition Response Graphs 345

the dates. But it also enables that DA can propose other dates, represented by the event
Propose Dates-DA. Now, this event triggers as a response and includes the event Ac-
cept LO, representing LO accepting the dates. Again, LO may do this, or again propose
dates. The proposal of dates may continue forever, and as long as no one accepts there
will be a pending response on at least one of the accept events. As soon as one of the ac-
cept events happen, they will both be excluded, and there will be none of the included
events in the sub-graph having pending responses. This corresponds to the accepting
condition for finite runs of DCR graphs [7], and thus intuitively reflects that the sub-
graph is in a completed state. Now, we want to express that the event Hold meeting can
only be executed when this is the case. To do this, we introduced a new core relation
between events called the milestone relation. If an event A is a milestone for an event
B, written A →� B, then B can not happen if A is included and required to be exe-
cuted again (i.e. as a response). The new milestone relation allow us to define nesting as
simply a tree structure on events that can be flattened to (flat) DCR Graphs by keeping
all atomic events (i.e. events with no sub-events) and letting them inherit the relations
defined for their super-events. In particular, the flattening does not introduce new events
(in fact it removes all super events) and at most introduce an order of n2 new relations.
Thus, we need not define a new operational semantics for nested DCR Graphs, instead
we can make the much simpler extension of the semantics for (flat) DCR Graphs to
consider the new milestone relation. It is worth noting that while the milestone relation
makes it very direct to express completion of subgraphs, we conjecture that it does not
add expressiveness to DCR Graphs.

Related Work. Our approach is closely related to the work on ConDec [18, 19]. The
crucial difference is that we allow nesting and a few core constraints making it possi-
ble to describe the state of a process as a simple marking. ConDec does not address
nesting (nor dynamic inclusion/exclusion), but allows one to specify any relation ex-
pressible within Linear-time Temporal Logic (LTL). This offers much flexibility with
respect to specifying execution constraints. In particular the condition and response re-
lations are standard verification patterns and also considered in [18, 19] (the condition
relation is called precedence), and we have used the same graphical notation. How-
ever, the execution of a process expressed as LTL (which typically involves a transla-
tion to a Büchi-automaton) is more complex and the run-time state is difficult to relate
to the original ConDec specification. Moreover, we conjecture that DCR Graphs are
as expressive as Büchi-automata, and thus more expressive than LTL. Finally, Nested
DCR Graphs relates to the independent (so far unpublished) work on the declarative
Guard-Stage-Milestone model by Hull, presented in invited talks at WS-FM 2010 and
CASCON 2010.

Structure of Paper. In Sec. 2 we define Nested DCR Graphs formally, motivated by the
case study, and define the mapping to flat DCR Graphs with milestones. In Sec. 3 we
then define the lts semantics and the mapping from flat DCR Graphs with milestones to
Büchi-automata. The two maps together define the semantics of Nested DCR Graphs.
Due to space limitations we refer to [8] and the full version [9] for a detailed description
of the case study and tool support. We conclude in Sec. 4 and give pointers to future
work.

www.manaraa.com

346 T. Hildebrandt, R.R. Mukkamala, and T. Slaats

2 Nested DCR Graphs and Milestones

We now give the formal definition of the Nested DCR Graph model described infor-
mally above, which extends the model in our previous work [7] with nesting and the
new milestone relation →� between events.

Definition 1. A Nested Distributed dynamic condition response graph with milestones
is a tuple (E, �, M,→•, •→,→�,±, Act, l, R, P, as), where

(i) E is the set of events
(ii) � : E ⇀ E is a partial function mapping an event to its super-event (if defined),

and we also write e � e′ if e′ = �k(e) for 0 < k, referred to as the nesting
relation

(iii) M = (E, R, I) ⊆ atoms(E) × atoms(E) × atoms(E) is the marking, contain-
ing sets of currently executed events (E), currently pending responses (R), and
currently included events (I).

(iv) →•⊆ E × E is the condition relation
(v) •→⊆ E × E is the response relation

(vi) →�⊆ E × E is the milestone relation
(vii) ± : E × E ⇀ {+, %} is a partial function defining the dynamic inclusion and

exclusion relations by e →+ e′ if ±(e, e′) = + and e →% e′ if ±(e, e′) = %
(viii) Act is the set of actions

(ix) l : E → Act is a labeling function mapping events to actions.
(x) R is a set of roles,

(xi) P is a set of principals (e.g. persons or processors) and
(xii) as ⊆ (P ∪ Act) × R is the role assignment relation to principals and actions.

where atoms(E) = {e | ∀e′ ∈ E. � (e′) �= e} is the set of atomic events.
We require that the nesting relation � ⊂ E × E is acyclic and that there are no

infinite sequence of events e1 � e2 � We will write e � e′ if e � e′ or e = e′, and
e	e′ if e′�e or e = e′. We require that the nesting relation is consistent with respect to
dynamic inclusion/exclusion in the following sense: If e�e′ or e′�e then ±(e, e′′) = +
implies ±(e′, e′′) �= % and ±(e, e′′) = % implies ±(e′, e′′) �= +.

The new elements are the nesting relation � ⊂ E ×E and the milestone relation →�⊆
E×E. The consistency between the nesting relation and the dynamic inclusion/exclusion
is to ensure that when we map a nested DCR Graph to the corresponding flat DCR
Graph as defined in Def. 2 below, no atomic event both includes and excludes another
event. That is, if an event e includes (excludes) another event e′′, then any of its super
or sub events e′ can not exclude (include) the event e′′.

The new elements conservatively extend the DCR Graphs defined in [7] in the sense
that given a Nested dynamic condition response graph as defined in Def. 1, the tu-
ple (atoms(E), M,→•, •→,±, Act, l, R, P, as) is a (Distributed) dynamic condition re-
sponse graph as defined in [7]. In particular, the semantics will be identical if both the
� map and the milestone relation are empty.

A nested distributed dynamic condition response graph can be mapped to a flat dis-
tributed dynamic condition response graph with at most the same number of events and

www.manaraa.com

Nested Dynamic Condition Response Graphs 347

a quadratic growth of the relations . Essentially, all relations are extended to sub events,
and then only the atomic events are preserved. The labelling function is extended by
labelling an atomic event e by the sequence of labels labelling the chain of super events
starting by the event itself: e � e1 . . . � ek � �. The role assignment is extended to
sequences of actions by taking the union of roles assigned to the actions.

Definition 2. For a Nested DCR Graph G = (E, �, M,→•, •→,→�,±, Act, l, R, P, as)
define the underlying flat DCR Graph as

G� = (atoms(E), M,→•�, •→�,→��,±�, Act+, l�, R, P, as�),

where

– rel� = �rel	 for rel ∈ {→•, •→,→�} ,
– ±(e, e′)�

= ±(es, e
′
s) if ±(es, e

′
s) is defined, e � es and e′ 	 e′s,

– l�(e0) = a0.a1.a2 . . . ak and as�(a0.a1.a2 . . . ak) =
⋃

0≤i≤k as(ai), if e0 � e1 �
e2 . . . � ek � � and l(ei) = ai, for 0 ≤ i ≤ k, and

– as�(p) = p for p ∈ P.

3 Semantics

Below we define the semantics of DCR Graphs with milestones by giving a labelled
transition semantics and a mapping to Büchi-automata.

Notation. For a set A we write P(A) for the power set of A. For a binary relation
→⊆ A×A and a subset ξ ⊆ A of A we write → ξ and ξ → for the set {a ∈ A | (∃a′ ∈
ξ | a → a′)} and the set {a ∈ A | (∃a′ ∈ ξ | a′ → a)} respectively.

Definition 3. For a dynamic condition response graph with milestones G = (E, M,→•
, •→,→�,±, l, Act, R, P, as), we define the corresponding labelled transition systems
T (G) to be the tuple (S, M,→⊆ S ×Act×S) where S = P(E)×P(E)×P(E) is the
set of markings of G and M = (R, I, E) ∈ S is the initial marking, →⊆ S × E× (P×
Act × R) × S is the transition relation given by M′ (e,(p,a,r))−−−−−−→ M′′ where

(i) M′ = (E′, R′, I ′) is the marking before transition
(ii) M′′ = (E′ ∪ {e}, R′′, I ′′) is the marking after transition

(iii) e ∈ I , l(e) = a, p as r, and a as r,
(iv) →•e ∩I ′ ⊆ E′,
(v) →�e ∩I ′ ∩ R′ = ∅,

(vi) I ′′ = (I ′ ∪ e→+) \ e→%,
(vii) R′′ = (R′ \ {e}) ∪ e•→,

(viii) E′′ = E′ ∪ {e}
We define a run (e0, (p0, a0, r0)), (e1, (p1, a1, r1)), . . . of the transition system to be a

sequence of labels of a sequence of transitions Mi
(ei,(pi,ai,ri))−−−−−−−−−→ Mi+1 starting from

the initial marking. We define a run to be accepting if ∀i ≥ 0, e ∈ Ri.∃j ≥ i.(e =
ej ∨ e �∈ Ij). In words, a run is accepting if no response event is included and pending
forever, i.e. it must either happen at some later state or become excluded.

www.manaraa.com

348 T. Hildebrandt, R.R. Mukkamala, and T. Slaats

Condition (iii) in the above definition expresses that, only events e that are currently
included, can be executed, and to give the label (p, a, r) the label of the event must be
a, p must be assigned to the role r, which must be assigned to a. Condition (iv) requires
that all condition events to e which are currently included should have been executed
previously. Condition (v) states that the currently included events which are milestones
to event e must not be in the set of pending responses (R′). Conditions (vi), (vii) and
(viii) are the updates to the sets of included events, pending responses and executed
events respectively. Note that an event e′ can not be both included and excluded by the
same event e, but an event may trigger itself as a response.

If one considers only finite runs then the acceptance condition degenerates to requir-
ing that no pending response is included at the end of the run. If infinite runs are also of
interest (as e.g. for reactive systems and LTL) the acceptance condition can be captured
by a mapping to a Büchi-automaton with τ -event defined as follows.

Definition 4. A Büchi-automaton with τ -event is a tuple (S, s, Evτ ,→⊆ S × Evτ ×
S, F) where S is the set of states, s ∈ S is the initial state, Evτ is the set of events
containing the special event τ , →⊆ S×Evτ ×S is the transition relation, and F is the
set of accepting states. A (finite or infinite) run is a sequence of labels not containing
the τ event that can be obtained by removing all τ events from a sequence of labels
of transitions starting from the initial state. The run is accepting if the sequence of
transitions passes through an accepting state infinitely often.

Since we at any given time may have several pending responses we must make sure in
the mapping to Büchi-automata that all of them are eventually executed or excluded.
To do this we assume any fixed order of the finite set of events E of the given dynamic
condition response graph. For an event e ∈ E we write rank(e) for its rank in that
order and for a subset of events E′ ⊆ E we write min(E′) for the event in E′ with the
minimal rank.

Definition 5. For a finite distributed dynamic condition response graph G = (E, M,→•
, •→,→�,±, Act, l, R, P, as) where E = {e1, . . . , en}, marking M = (E, R, I) and
rank(ei) = i, we define the corresponding Büchi-automaton with τ -event to be the
tuple B(G) = (S, s,→⊆ S × Evτ × S, F) where

– S = P(E) × P(E) × P(E) × {1, . . . , n} × {0, 1} is the set of states,
– Evτ = (E × (P × Act × R)) ∪ {τ} is the set of events,
– s = (M, 1, 1) if I ∩ R = ∅, and s = (M, 1, 0) otherwise
– F = P(E) × P(E) × P(E) × {1, . . . , n} × {1} is the set of accepting states and

– →⊆ S × Evτ × S is the transition relation given by (M′, i, j) τ−−−→ (M′, i, j′)
where

(a) M′ = (E′, R′, I ′) is the marking
(b) j′ = 1 if I ′ ∩ R′ = ∅ otherwise j′ = 0.

and (M′, i, j)
(e,(p,a,r))−−−−−−−−−→ (M′′, i′, j′) where

(i) M′ = (E′, R′, I ′)
(e,(p,a,r))−−−−−−−−−→ (E′′, R′′, I ′′) = M′′ is a transition of T (D).

www.manaraa.com

Nested Dynamic Condition Response Graphs 349

(ii) For M = {e ∈ I ′ ∩ R′ | rank(e) 〉 i} let j′ = 1 if
(a) I ′′ ∩ R′′ = ∅ or
(b) min(M) ∈ (I ′ ∩ R′\(I ′′ ∩ R′′)) ∪ {e} or
(c) M = ∅ and min(I ′ ∩ R′) ∈ (I ′ ∩ R′\(I ′′ ∩ R′′)) ∪ {e}
otherwise j′ = 0.

(iii) i′ = rank(min(M)) if min(M) ∈ (I ′ ∩ R′\(I ′′ ∩ R′′)) ∪ {e} or else
(iv) i′ = rank(min(I ′∩R′)) if M = ∅ and min(I ′∩R′) ∈ (I ′∩R′\(I ′′∩R′′))∪{e}

or else
(v) i′ = i otherwise.

We prove that the mapping from the labelled transition semantics to Büchi-automata is
sound and complete in the full version of the paper [9].

The formal semantics of DCR graphs mapped to Büchi-automata enabled us to per-
form model checking and formal verification of processes specified in DCR graphs. The
prototype implementation allows us to perform verification of both safety and liveness
properties using the SPIN [17] model checker and only verification of safety properties
using the ZING [14] model checker. The prototype has also been extended to support
runtime verification, for monitoring of properties specified using Property Patterns [6].

4 Conclusion and Future Work

We have given a conservative extension of the declarative process model Distributed
DCR Graphs [7] to allow for nested sub-graphs motivated and guided by a case study
carried out jointly with our industrial partner. A detailed description of the case study
and tool support for DCR Graphs can be found in [8]. The main technical challenge
was to formalize the execution and in particular completion of sub-graphs. We do this
by introducing a new milestone relation A →� B, which blocks the event B as long as
there are events in A required to be executed (i.e. required responses). We believe this is
the right notion of completeness of nested sub-graphs. First of all, it coincides with the
definition of acceptance of finite runs in DCR Graphs [7] recalled in Sec. 3 above. Sec-
ondly, its formalization is a simple extension of the labelled transition semantics given
in [7, 11] since it is a condition on the set of pending responses already included in the
states. Finally, it allows for a nested sub-graph to alternate between being completed
and not completed, as is often the case in ad hoc case management. This is not possible
in the related ad-hoc sub-process activity in BPMN 2.0. Future work within the Trust-
Care and CosmoBiz projects, which are the context of the work, includes exploring the
expressiveness of DCR Graphs, extending the theory and tools for analysis, verification
and model-driven engineering, extending the model to be able to express other relevant
features such as multi-instance sub-graphs, time, exceptions, data, types and run-time
adaption, i.e. dynamic changes of the model.

References

1. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards Formal Analysis of Artifact-
Centric Business Process Models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM
2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

www.manaraa.com

350 T. Hildebrandt, R.R. Mukkamala, and T. Slaats

2. Bussler, C., Jablonski, S.: Implementing agent coordination for workflow management sys-
tems using active database systems. In: Proceedings Fourth International Workshop on Re-
search Issues in Data Engineering, 1994. Active Database Systems, pp. 53–59 (February
1994)

3. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business opera-
tions and processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)

4. Davulcu, H., Kifer, M., Ramakrishnan, C.R., Ramakrishnan, I.V.: Logic based modeling and
analysis of workflows. In: Proceedings of ACM SIGACT-SIGMOD-SIGART, pp. 1–3. ACM
Press (1998)

5. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business
processes. In: Proceedings of the 12th International Conference on Database Theory, ICDT
2009, pp. 252–267. ACM Press, New York (2009)

6. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for finite-state ver-
ification. In: Proceedings of the Second Workshop on Formal Methods in Software Practice,
FMSP 1998, pp. 7–15. ACM (1998)

7. Hildebrandt, T., Mukkamala, R.R.: Declarative event-based workflow as distributed dynamic
condition response graphs. In: Programming Language Approaches to Concurrency and
Communication-cEntric Software, PLACES 2010, EPTCS (2010)

8. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Designing a cross-organizational case manage-
ment system using dynamic condition response graphs. In: Accepted for IEEE International
EDOC Conference (2011)

9. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Designing a cross-organizational case manage-
ment system using nested dynamic condition response graphs. Technical Report TR-2011-
141, IT University of Copenhagen (2011)

10. Lyng, K.M., Hildebrandt, T., Mukkamala, R.R.: From paper based clinical practice guide-
lines to declarative workflow management. In: Proceedings ProHealth 2008 Workshop
(2008)

11. Mukkamala, R.R., Hildebrandt, T.: From dynamic condition response structures to büchi
automata. In: Proceedings of 4th IEEE International Symposium on Theoretical Aspects of
Software Engineering (TASE 2010) (August 2010)

12. Mukkamala, R.R., Hildebrandt, T., Tøth, J.B.: The resultmaker online consultant: From
declarative workflow management in practice to LTL. In: Proceeding of DDBP (2008)

13. Object Management Group BPMN Technical Committee. Business Process Model and No-
tation, version 2.0 (2010),
http://www.omg.org/cgi-bin/doc?dtc/10-06-04.pdf

14. Microsoft Research. Zing model checker. Webpage (2010),
http://research.microsoft.com/en-us/projects/zing/

15. Senkul, P., Kifer, M., Toroslu, I.H.: A logical framework for scheduling workflows under
resource allocation constraints. In: VLDB, pp. 694–705 (2002)

16. Singh, M.P., Meredith, G., Tomlinson, C., Attie, P.C.: An event algebra for specifying
and scheduling workflows. In: Proceedings of DASFAA, pp. 53–60. World Scientific Press
(1995)

17. Spin. On-the-fly, ltl model checking with spin. Webpage (2008),
http://spinroot.com/spin/whatispin.html

18. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing be-
tween flexibility and support. Computer Science - R&D 23(2), 99–113 (2009)

19. Pesic, M., van der Aalst, W.M.P.: A Declarative Approach for Flexible Business Processes
Management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 169–180.
Springer, Heidelberg (2006)

20. Winskel, G.: Event Structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986.
LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)

http://www.omg.org/cgi-bin/doc?dtc/10-06-04.pdf
http://research.microsoft.com/en-us/projects/zing/
http://spinroot.com/spin/whatispin.html

www.manaraa.com

Efficient Verification

of Evolving Software Product Lines

Hamideh Sabouri and Ramtin Khosravi

School of Electrical and Computer Engineering,
University of Tehran, Karegar Ave., Tehran, Iran

{sabouri,rkhosravi}@ece.ut.ac.ir

Abstract. Software product line engineering represents a promising ap-
proach to achieve systematic reuse in development of families of software.
Software product lines are intended to be used in a long period of time.
As a result, they evolve over time, due to the changes in the requirements.
Having several individual products in a software family, verification of
the entire software family may take a considerable effort. In this paper,
we present an idea for efficient verification of evolving software product
lines, by reusing the result of verification and state space of the product
family. To this end, we generate the state space of the product family
once and verify the desired properties. The result of verification is the
set of products satisfying the given properties. When the product line
evolves, we may use the result of verification, and the state space to
produce new results, and update the existing state space. We show the
applicability of our approach by applying it on a small case study.

1 Introduction

Software product line engineering is a paradigm to develop software applications
using platforms and mass customization. To this end, the commonalities and
differences of the applications are modeled explicitly [1]. Feature models are
usually used to specify the variability of software product lines. A product is
defined by a combination of features. The set containing all of the valid feature
combinations defines the set of products [2]. A feature model is a tree of features,
containing mandatory, and optional features. It may also contain a number of
constraints among the features. Feature models may evolve over time due to
the changes in the requirements. This evolution may imply addition, removal, or
replacement of some features. It also may add or remove some constraints.

Recently, several approaches have been developed for formal modeling and
verification of product lines [3–7]. However, these works do not consider the
evolution of the product line.

Software product lines are intended to be used in a long period of time. As
a result, they evolve over time, due to the changes in the requirements [8]. The
evolution may imply addition, removal, or replacement of some features. More-
over, it may add or remove some constraints. At the model level, adding and
removing features result in adding a new behavior and eliminating an existing

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 351–358, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

352 H. Sabouri and R. Khosravi

behavior from the model, and the model should be verified entirely again, after
these changes. However, from the product line perspective, adding features to
a product line, and removing features from a product line will cause adding a
number of new products, and elimination of a number of products. Moreover,
removing some of the constraints, and adding some new constraints, will cause a
number of previously invalid products to be valid, and invalidation of a number
of the valid products. Now, if we look at the problem again, we can see that
re-verifying the entire product family after adding or removing features, leads
to regeneration of the state spaces of products that are generated before, and
re-verification of a number of products that are verified before.

As verification of the product family may take a considerable effort, in this
work, we present an idea to verify evolving product lines efficiently, by reusing
the state space of the product family and the result of verification. For this
purpose, we generate the state space of the product family and verify it against
the properties once. The result of verification of the product family against a
given property is the set of products satisfying the property. When the product
line evolves, it is not necessary to generate the state space of the product family
from scratch and verify the entire product family against the set of properties
again. The space and the result of verification are used to update the existing
state space and produce the new results.

In this paper, we use a product family of coffee machines, as a running exam-
ple. A coffee machine may serve one type of coffee, and may add fix or variable
amount of sugar to the coffee.

This paper is structured as follows. Section 2 introduces product line modeling
using PL-CCS. In Section 3, we explain our approach to reuse the existing state
space and results of verification, to verify the evolved product line. In Section 4,
we present the result of applying the proposed approach on the coffee machine
case study, and Section 5 concludes the work.

2 Product Line Modeling

A product line can be modeled as a system including a number of variation
points. Each variation point has a number of variants that are associated to it.
Each variant represents a feature, and selection of a variant of a variation point
corresponds to including a feature from the feature model, in the final prod-
uct. Individual products can be obtained from a product line model by deciding
about all of the variation points.

The Coffee Machine Example: Feature Model. The feature model of the
coffee machine example is shown in Figure 1. A coffee machine may serve coffee
or coffee with milk. Moreover it may add fix amount or adjustable amount of
sugar to the coffee. In our paper, we use PL-CCS notation [6] to model a product
line. PL-CCS supports modeling variation in the behavior of product families,
by means of optional and variants operators.

www.manaraa.com

Efficient Verification of Evolving Software Product Lines 353

Fig. 1. The feature model of the coffee machine example

2.1 PL-CCS

The process algebra PL-CCS [6], is an extension of CCS [9], and is used to
model the behavior of product families. PL-CCS extends CCS with the variants
operator⊕, and the optional operator 〈 〉, to define variation points. The variants
operator ⊕ defines a variation point that one and only one of its variants should
be included in the final products. The optional operator 〈〉 defines a variation
point where a variant may be included in the final products, but its inclusion
is not mandatory. As the optional operator can be defined using the variants
operator (〈P 〉 := P ⊕Nil), we focus on the variants operator only.

In [6], the configured-transition system semantics is defined for a PL-CCS pro-
gram. For a PL-CCS program with n variants, we associate to each variant a
unique number, and keep track of inclusion or exclusion made for each variant
using a configuration vector ν ∈ {I, E, ?}n, where I and E represent the in-
clusion and exclusion of the variants respectively, and ? denotes that it is not
decided about the inclusion or exclusion of the variant yet. For simplicity, we
assume that the ith element of the configuration vector represents the decision
that is made for the ith variant.

The Coffee Machine Example: PL-CCS Model. The product family of
coffee machines can be modeled using PL-CCS as:

S
def
= coin.AddCoffee .AddSugar .S AddCoffee

def
= coffee ⊕ coffee.milk

AddSugar
def
= sugar ⊕ (sugar + sugar .sugar)

According to the above model, a coffee machine receives a coin, fills the cup
with coffee (corresponding to the coffee feature) or coffee and milk (corresponding
to the coffee with milk feature), and finally adds sugar. It may add one unit of
sugar (corresponding to the fixed sugar feature), or select between one unit or
two units of sugar (corresponding to the adjustable sugar feature).

3 Verification of Evolved Product Line

In this section, we describe our approach to reuse the state space and verification
result of the product family, in verification of the evolved product line.

www.manaraa.com

354 H. Sabouri and R. Khosravi

The Coffee Machine Example: Evolution. We assume that the coffee ma-
chine product line evolves by adding the new feature, iced coffee, to its feature
model. The new model of the product family is:

S
def
= coin.AddCoffee .AddSugar .S AddCoffee

def
= coffee ⊕ coffee .milk ⊕ coffee .ice

AddSugar
def
= sugar ⊕ (sugar + sugar .sugar)

3.1 Reusing the State Space

In our proposed approach for reuse, the state space of a product family is gen-
erated once and is updated as the product line evolves. A trivial way to reuse
the state space is generating the state space of each product independently, and
update the state space by adding or removing the state space of the new and
eliminated products, respectively:

The state space: S = Sp1 ∪ ... ∪ Spm

Adding a new product pm+1: S
′ = S ∪ Spm+1

Removing a product pk: S′ = Sp1 ∪ ... ∪ Spk−1
∪ Spk+1

∪ ... ∪ Spm

In this way, we reuse the state space of the products that are verified before.
However, we want to reuse state space that is common among products as well.
For this purpose, we verify the whole product family, and store the state space.
After the evolution of product line, we update the state space based on the evo-
lution, as it is described in the following.

Fig. 2. Updating the existing state space after adding a new variant D, for sequential,
non-deterministic, and interleaved execution of two processes

Adding a New Feature. To update the state space after adding a new feature,
we should mark the states where we are deciding about each variation point in
the model. For simplicity, we add two special states to indicate where the be-
havior varies. In Figure 2, these states are shown using gray and black colors.
A new feature, appears as a new operand of a variant operator. To update the
state space, we add the states of the variant to the variant behaviors which are
indicated by the special states, for the associated variation point. Figure 2, shows

www.manaraa.com

Efficient Verification of Evolving Software Product Lines 355

the updated state space after adding a new variant D to the variation point, for
sequential, non-deterministic, and interleaved execution of a common behavior
C and a variable behavior V . In this figure, only the dashed states are added to
the state space and other states are reused.

Removing a Feature. To update the state space after eliminating an exist-
ing feature, we should keep track of the features that use each state. To update
the state space, the states that are used only by the specific feature which is
eliminated from the product line, are removed along with their outgoing and
incoming transitions.

The Coffee Machine Example: Reusing the State Space. Figure 3, shows
how the state space of the coffee machine example can be updated by adding
the dashed states, after adding a new feature named iced coffee to the feature
model of the product line.

Fig. 3. Updating the existing state space of the coffee machine example after adding
the new feature iced coffee

3.2 Reusing the Result of Verification

The result of verification of a product family is reused when new products are
added to the product line, or some of the products are eliminated. The result of
verification of a product family against a property ϕ, is the set of products that
satisfy ϕ, and are valid according to the feature model:

R = {pi | (pi ∈ V) ∧ (pi � ϕ)}
Adding a New Feature. After adding a new feature to the product line, we
intend to only verify the set of new products that are added to the product family
consequently. For this purpose, we initialize the configuration vector, to restrict
the model checker to verify only the new products. Adding a new feature leads to
adding a new variant in the configuration vector: ν ∈ {I, E, ?}n+1. Considering
the fact that we verified all of the products that do not include the new feature
before, we should only verify the new products which are the combinations of
existing features with the new feature. To this end, the configuration vector is
initialized as:

www.manaraa.com

356 H. Sabouri and R. Khosravi

ν = 〈
n︷ ︸︸ ︷

?, ..., ?, I〉

In this way, we only verify the new products against ϕ. Figure 2 shows that
after adding the new variant D to the variation point, only the dotted states,
which represent C.D, C + D, and C ‖ D products, should be investigated for
verification.

Eliminating a Feature. Elimination of a feature from the product line, causes
the elimination of a number of products from the product family. In this case,
we only need to update the result set, and there is even no need to re-verify
the product family. Therefore, for each product pk, that is eliminated from the
product family, we remove it from the result set.

Adding a New Constraint. Adding a new constraint to the feature model
leads to invalidation of some of the products that were valid before, and a new
set of valid products V ′ ⊆ V . To obtain the new result set without re-verifying
the product family, we check the validation of the products of the result set, and
remove the products that are not valid according to the feature model anymore.

Removing a Constraint. Removing an existing constraint from the feature
model makes some of the invalid products valid, and leads to a new set of valid
products V ′ which V ⊆ V ′. In this case, we avoid re-verification of the entire
product family by initializing the configuration vector, to restrict the model
checker to only verify the new products. To this end, we should consider the
effect of each type of constraints on the validation of products, and define the
binding constraints based on it. The requires constraint from feature f to feature
f ′ (f → f ′) leads to invalidation of products that include f , but exclude f ′. The
excludes constraint between two features f and f ′ (f → ¬f ′,f ′ → ¬f), causes
invalidation of products that include both features. We assume that f and f ′

correspond to the ith and jth (i < j) variants of the configuration vector ν,
and and initialize the configuration vectors νreq and νexcl to verify only the new
products, after removing the requires and excludes constraints respectively:

νreq = 〈

j−1︷ ︸︸ ︷
i−1︷ ︸︸ ︷

?, ..., ?, I, ?, ..., ?, E, ?, ..., ?〉 νexcl = 〈

j−1︷ ︸︸ ︷
i−1︷ ︸︸ ︷

?, ..., ?, I, ?, ..., ?, I, ?, ..., ?〉

By applying the above initializations, we only verify the new products against ϕ.

The Coffee Machine Example: Result Reuse. After adding the new fea-
ture, iced coffee, we only should verify the coffee machines that serve iced coffee
and add a fixed or adjustable amount of sugar. For this purpose, we initial-
ize the configuration vector to 〈E,E, I, ?, ?〉. The dotted states in Figure 3 show

www.manaraa.com

Efficient Verification of Evolving Software Product Lines 357

the states that should be investigated for verification. Therefore, practically we
should only verify 〈E,E, I, I, E〉 and 〈E,E, I, E, I〉 products, and add them to
the previous result set that we have, if they satisfy the property. If we add a new
constraint to the feature model stating that ”coffee with milk” feature requires
the ”adjustable sugar”feature, we simply remove the 〈E, I, E, I, E〉 product from
the result set, as it is not valid according to the feature model anymore.

4 Results

We considered the product family of coffee machines as a case study to evaluate
the proposed approach. The coffee machine presented in this paper as a running
example, is a simplified version of this case study. We modeled the coffee machine
using Promela and verified it with Spin model checker, as PL-CCS does not have
tool support. We modeled the configuration vector, using global variables to be
able to investigate our approach.

The first model of the coffee machine (M1) serves coffee which is a mandatory
feature, and may serve tea, which is an optional feature, and there is one payment
method, and a coffee and tea container. In the second model (M2) one more
payment method is added as a new feature to the product family. In the next
step, the product line of coffee machine evolves, by adding the capability of
serving iced coffee (M3) and iced tea (M4). Finally, on the last two models (M5,
M6), we can decide about using a small coffee/tea container or a large one, in a
coffee machine. Table 1 shows the number of states generated for verification of a
product family, the number of states generated for verification of single products,
the number of states added to the existing state space after evolution, and the
number of states investigated for verification of product family by reusing the
existing results.

Table 1. The result of applying our method to the coffee machine case study

Model Product Family Single Products New states Investigated states

M1 774 854 774 774
M2 14,342 15,533 13,488 13,342
M3 26,179 44,548 10,646 26,179
M4 38,016 79,217 6,533 24,976
M5 96,682 191,493 17,465 52,126
M6 245,006 447,203 53,513 132,460

The result shows the effectiveness of our approach. For example, in the case
of model M6, 447,203 states are generated to verify each product independently.
By reusing the common states among products the number of states is reduced
to 245,006. However, if we reuse the state space and the result of M5, we only
need to add 53,513 new states to it, and investigate 132,460 states to verify the
new products.

www.manaraa.com

358 H. Sabouri and R. Khosravi

5 Conclusion

In this paper, we proposed an idea to reuse the state space and the result of
verification of a product family, to verify the product line after evolution. Using
this approach, we do not need to generate the state space of the product family
from scratch, and verify the entire product family against the properties again.
The result of applying our proposed approach on a coffee machine example shows
the effectiveness of this approach.

References

1. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus
(2005)

2. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon Univer-
sity Software Engineering Institute (November 1990)

3. Kishi, T., Noda, N., Katayama, T.: Design Verification for Product Line Develop-
ment. In: Obbink, H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 150–161.
Springer, Heidelberg (2005)

4. Larsen, K.G., Nyman, U., Wasowski, A.: Modeling software product lines using
color-blind transition systems. Int. J. Softw. Tools Technol. Transf. 9(5), 471–487
(2007)

5. Larsen, K.G., Nyman, U., W ↪asowski, A.: Modal I/O Automata for Interface and
Product Line Theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 64–79. Springer, Heidelberg (2007)

6. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and Model Checking Software
Product Lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051,
pp. 113–131. Springer, Heidelberg (2008)

7. Sabouri, H., Khosravi, R.: An effective approach for verifying product lines in pres-
ence of variability models. In: FMSPLE: First International Workshop on Formal
Methods in Software Product Line Engineering, pp. 113–120 (2010)

8. Svahnberg, M., Bosch, J.: Evolution in software product lines: Two cases. Journal
of Software Maintenance 11, 391–422 (1999)

9. Milner, R.: A Calculus of Communicating Systems. Springer-Verlag New York, Inc.,
Secaucus (1982)

www.manaraa.com

Extending Interface Automata with Z Notation
∗

Zining Cao1,2,3 and Hui Wang1

1 National Key Laboratory of Science and Technology
on Avionics System Integration,
Shanghai 200233, P.R. China

2 Department of Computer Science and Technology,
Nanjing University of Aero. & Astro., Nanjing 210016, P.R. China

3 Provincial Key Laboratory for Computer Information Processing Technology,
Soochow University, Suzhou 215006, P.R. China

caozn@nuaa.edu.cn

Abstract. In this paper, we propose a specification approach combin-
ing interface automata and Z language. This approach can be used to
describe behavioural properties and data properties of software compo-
nents. We also study the composition and refinement relation on ZIAs.

1 Introduction

Modern software systems are comprised of numerous components, and are made
larger through the use of software frameworks. Such software systems exhibit
various behavioural aspects such as communication between components, and
state transformation inside components. Formal specification techniques for such
systems have to be able to describe all these aspects. Unfortunately, a single
specification technique that is well suited for all these aspects is yet not available.
Instead one needs various specialised techniques that are very good at describing
individual aspects of system behaviour. This observation has led to research
into the combination and semantic integration of specification techniques. In
this paper we combine two well researched specification techniques: Interface
automata and Z.

An interface automaton (IA), introduced by de Alfaro and Henzinger in [1], is
an automata-based model suitable for specifying component-based systems. IA
is part of a class of models called interface models, which are intended to specify
concisely how systems can be used and to adhere to certain well-formedness
criteria that make them appropriate for modelling component-based systems.

Z [5] is a typed formal specification notation based on first order predicate
logic and set theory. The formal basis for Z is first order predicate logic extended

∗
This work was supported by the Aviation Science Fund of China under Grant No.
20085552023, the National Natural Science Foundation of China under Grants No.
60873025, the Natural Science Foundation of Jiangsu Province of China under Grant
No. BK2008389, and the Foundation of Provincial Key Laboratory for Computer In-
formation Processing Technology of Soochow University under Grant No. KJS0920.

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 359–367, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

360 Z. Cao and H. Wang

with type set theory. Using mathematics for specification is all very well for small
examples, but for more realistically sized problems, things start to get out of
hand. To deal with this, Z includes the schema notation to aid the structuring
and modularization of specifications. A boxed notation called schemas is used
for structuring Z specifications. This has been found to be necessary to handle
the information in a specification of any size. In particular, Z schemas and the
schema calculus enable a structured way of presenting large state spaces and
their transformation.

In this paper, we combine interface automata with Z to describe both be-
havioural property and data property. We give the definition of ZIA. Roughly
speaking, a ZIA is in a style of interface automata but its states and transitions
are described by Z language. Then the composition of ZIA is defined. Further-
more, we define the refinement relation between ZIAs and prove some proposi-
tions of such refinement relation. This paper is organized as follows: Section 2
gives a specification language-ZIA. Section 3 proposes the composition for ZIA,
and Section 4 presents refinement relation for ZIA. The paper is concluded in
Section 5.

2 Interface Automata with Z Notation

An interface automaton (IA) [1], introduced by de Alfaro and Henzinger, is
an automata-based model suitable for specifying component-based systems. An
IA consists of states, initial states, internal actions, input actions, output ac-
tions and a transition relation. The composition and refinement of two IAs are
proposed in [1]. Z was introduced in the early 80’s in Oxford by Abrial as a
set-theoretic and predicate language for the specification of data structure, state
spaces and state transformations. A boxed notation called schemas is used for
structuring Z specifications. Z makes use of identifier decorations to encode in-
tended interpretations. A state variable with no decoration represents the current
(before) state and a state variable ending with a prime (′) represents the next
(after) state. A variable ending with a question mark (?) represents an input vari-
able and a variable ending with an exclamation mark (!) represents an output
variable. In Z, there are many schema operators. For example, we write S ∧T to
denote the conjunction of these two schemas: a new schema formed by merging
the declaration parts of S and T and conjoining their predicate parts. S ⇒ T
(S ⇔ T) is similar to S ∧T except connecting their predicate parts by ⇒ (⇔).
The hiding operation S\(x1, ..., xn) removes from the schema S the components
x1, ..., xn explicitly listed, which must exist. The hiding operation S\(x1, ..., xn)
removes from the schema S the components x1, ..., xn explicitly listed, which
must exist. Formally, S\(x1, ..., xn) is equivalent to (∃ x1 : t1; ...; xn : tn • S),
where x1, ..., xn have types t1, ..., tn in S . The notation ∃ x : a • S states that
there is some object x in a for which S is true. The notation ∀ x : a • S states
that for each object x in a, S is true. For the sake of space, more details of Z can
be refereed to some books on Z [5]. Interface automata and Z seem in all ways to
complement each other in their capabilities. Interface automata can characterise

www.manaraa.com

Extending Interface Automata with Z Notation 361

precisely the behavioural aspects of a system, whereas they are not suitable for
modelling concisely (abstractly) the system data structures. On the other hand,
Z has great expressive power to describe abstract data structures but lack the
notion of operation evaluation order. This paper is based on ZIA, a specification
language which integrates interface automata and Z. ZIA is defined such that
apart from enabling one to deal with the behavioural and the data structure
aspects of a system independently. In the original interface automata, states and
operations are abstract atomic symbols. But in ZIA, states and operations are
described by Z schemas.

In the rest of this paper, we use the following terminology: A state schema
is a Z schema which does not contain any variable with decoration ′. An in-
put operation schema is a Z schema which contains input variables. An output
operation schema is a Z schema which contains output variables. An internal
operation schema is a Z schema which contains variables with decoration ′. Let
S to be a Z schema, we use V I (S) (VO(S), V H (S)) to denote the set of input
variables (output variables, internal variables) in S . In the following, given an
assignment ρ and a Z schema A, we write ρ |= A if ρ assigns every variable x
in the declaration part of A to an element of its type set, which satisfies the
predicate part of A; we write |= A if ρ |= A for any assignment ρ.

Definition 1. An interface automaton with Z notation (ZIA) P = 〈SP , S
i
P ,

AI
P , A

O
P , AH

P , V
I
P , V

O
P , V H

P , F
S
P , F

A
P ,G

IA
P ,GOA

P ,TP 〉 consists of the following
elements:

(1) SP is a set of states.
(2) S i

P ⊆ SP is a set of initial states. If S i
P = ∅ then P is called empty.

(3) AI
P , A

O
P and AH

P are disjoint sets of input, output, and internal actions,
respectively. We denote by AP = AI

P ∪ AO
P ∪AH

P the set of all actions.
(4) V I

P , V
O
P and V H

P are disjoint sets of input, output, and internal variables,
respectively. We denote by VP = V I

P ∪ VO
P ∪ V H

P the set of all variables.
(5) FS

P is a map, which maps any state in SP to a state schema in Z language.
Intuitively, for any state s , FS

P (s) specifies the data properties of all the variables
in the state s .

(6) FA
P is a map, which maps any input action in AI

P to an input operation
schema in Z language, and maps any output action in AO

P to an output opera-
tion schema in Z language, and maps any internal action in AH

P to an internal
operation schema in Z language. Intuitively, for any action a, FA

P (a) specifies
the data properties of all the variables before and after performing action a.

(7) GIA
P is a map, which maps any input action in AI

P to a set of input
variables. Intuitively, an input action a inputs all the input variables in GIA

P (a).
For any input action a, GIA

P (a) ⊆ V I (FA
P (a)).

(8) GOA
P is a map, which maps any output action in AI

P to a set of output
variables. Intuitively, an output action a outputs all the output variables in
GOA

P (a). For any output action a, GOA
P (a) ⊆ VO (FA

P (a)).
(9) TP is the set of transitions between states, TP ⊆ SP × AP × SP . If

(s , a, t) ∈ TP then ((FS
P (s)∧FA

P (a))\(x1, ..., xm)⇔ FS
P (t)[y ′

1/y1, ..., y
′
n/yn]) is a

www.manaraa.com

362 Z. Cao and H. Wang

tautology, where {x1, ..., xm} is the set of the variables in FS
P (s), {y1, ..., yn} is

the set of the variables in FS
P (t), the set of variables in FA

P (a) is the subset of
{x1, ..., xm} ∪ {y ′

1, ..., y
′
n}.

An action a ∈ AP is enabled at a state s ∈ VP if there is a step (s , a, s ′) ∈ TP

for some s ∈ SP . We indicate by AI
P(s), A

O
P (s), AH

P (s) the subsets of input,
output and internal actions that are enabled at the state s and we let AP (s) =
AI

P (s) ∪ AO
P (s) ∪ AH

P (s).

3 Composition

An interface automata is a specification of software component. A software sys-
tem consists of several components. The specification of a software system can
be modelled by the composition of ZIAs. In this section, we give the definition
of composition of ZIAs.

We first define composablity of ZIAs. Intuitively, two ZIAs are composable if
there is no conflict between their actions and between their variables.

Definition 2. Two ZIAs P and Q are composable if
V H

P ∩ VQ = ∅, V I
P ∩ V I

Q = ∅, VO
P ∩ VO

Q = ∅, V H
Q ∩VP = ∅, and

AH
P ∩AQ = ∅, AI

P ∩ AI
Q = ∅, AO

P ∩ AO
Q = ∅, AH

Q ∩AP = ∅.
We let SharedV (P ,Q) = VP ∩VQ , SharedA(P ,Q) = AP ∩ AQ .

Now we can define the product of two ZIAs if they are composable. The two
automata will synchronize on the shared actions and asynchronously interleave
all other actions.

Definition 3. If P and Q are composable ZIAs, their product P ⊗ Q is the
automaton defined by:

(1) SP⊗Q = SP × SQ .
(2) S i

P⊗Q = S i
P ×S i

Q .

(3) AI
P⊗Q = (AI

P ∪AI
Q)− SharedA(P ,Q).

(4) AO
P⊗Q = (AO

P ∪ AO
Q)− SharedA(P ,Q).

(5) AH
P⊗Q = AH

P ∪ AH
Q ∪ SharedA(P ,Q).

(6) V I
P⊗Q = (V I

P ∪V I
Q)− SharedV (P ,Q).

(7) VO
P⊗Q = (VO

P ∪ VO
Q)− SharedV (P ,Q).

(8) V H
P⊗Q = V H

P ∪ V H
Q ∪ SharedV (P ,Q).

(9) FS
P⊗Q : FS

P⊗Q((s , t)) = FS
P (s) ∧ FS

Q (t).

(10) FA
P⊗Q : FA

P⊗Q (a) = FA
P (a) ∧ FA

Q (a) if a ∈ SharedA(P ,Q), FA
P⊗Q(a) =

FA
P (a) if a ∈ AP\SharedA(P ,Q), FA

P⊗Q (a) = FA
Q (a) if a ∈ AQ\SharedA(P ,Q).

(11) GIA
P⊗Q : GIA

P⊗Q(a) = GIA
P (a) if a ∈ AI

P\SharedA(P ,Q), GIA
P⊗Q (a) =

GIA
Q (a) if a ∈ AI

Q\SharedA(P ,Q).

(12) GOA
P⊗Q : GOA

P⊗Q(a) = GOA
P (a) if a ∈ AO

P \SharedA(P ,Q), GOA
P⊗Q (a) =

GOA
Q (a) if a ∈ AO

Q\SharedA(P ,Q).

www.manaraa.com

Extending Interface Automata with Z Notation 363

(13) TP⊗Q = {((s , t), a, (s∗, t)) | (s , a, s∗) ∈ TP ∧a /∈ SharedA(P ,Q) ∧ t ∈
SQ} ∪ {((s , t), a, (s , t∗)) | (t , a, t∗) ∈ TQ ∧a /∈ SharedA(P ,Q) ∧ s ∈ SP} ∪
{((s , t), a, (s∗, t∗)) | (s , a, s∗) ∈ TP ∧(t , a, t∗) ∈ TQ ∧a ∈ SharedA(P ,Q)}.

In the product P⊗Q of two ZIAs P and Q , one of the automata may produce an
output (input) action that is an input (output) action of the other automaton,
but is not responded. The set IllegalA(P ,Q) of states of P ⊗ Q where this
happens are called the illegal states of the product with respect to actions.

Definition 4. Given two composable ZIAs P and Q , the set IllegalA(P ,Q) ⊆
SP × SQ of illegal states of P ⊗Q with respect to actions is defined by:

IllegalA(P ,Q) = {(s , t) ∈ SP × SQ | ∃ a ∈ SharedA(P ,Q). ((a ∈ AO
P (s) ∧ a �∈

AI
Q(t))∨ (a �∈ AO

P (s)∧a ∈ AI
Q(t))∨ (a ∈ AO

Q (t) ∧a �∈ AI
P (s))∨ (a �∈ AO

Q(t)∧a ∈
AI

P (s))}.

The definition of product should deal with not only the synchronization of the
shared actions but also the shared variables, i.e., when one ZIA writes to a shared
variable and the other should read this variable and etc. The set IllegalV (P ,Q)
of states of P ⊗ Q where this is not satisfied are called the illegal states of the
product with respect to variables.

Definition 5. Given two composable ZIAs P and Q , the set IllegalV (P ,Q) ⊆
SP × SQ of illegal states of P ⊗Q with respect to variables is defined by:

IllegalV (P ,Q) = {(s , t) ∈ SP×SQ | ∃ a. ((a ∈ AO
P (s)∧a ∈ AI

Q(t)∧GOA
P (a) �=

GIA
Q (a)) ∨ (a ∈ AI

P (s) ∧ a ∈ AO
Q(t) ∧ GOA

P (a) �= GIA
Q (a)) ∨ (a ∈ AI

P(s) ∧ a �∈
AO

Q(t) ∧ GIA
P (a) ∩ SharedV (P ,Q) �= ∅) ∨ (a �∈ AI

P(s) ∧ a ∈ AO
Q(t) ∧ GOA

Q (a) ∩
SharedV (P ,Q) �= ∅)) ∨ (a �∈ AO

P (t) ∧ a ∈ AI
Q(s) ∧ GIA

Q (a) ∩ SharedV (P ,Q) �=
∅) ∨ (a ∈ AO

P (t) ∧ a �∈ AI
Q(s) ∧GOA

P (a) ∩ SharedV (P ,Q) �= ∅))}.

The following proposition states that the product of two ZIAs also satisfies the
condition of the definition of ZIA.

Proposition 1. If P and Q are two composable ZIAs and IllegalA(P ,Q) ∪
IllegalV (P ,Q) = ∅, then P ⊗Q is a ZIA.

The product of ZIAs is associative, which is a ZIA extension version of Theorem
3.1 in [1].

Proposition 2. If P ,Q andR are composable and IllegalA(P ,Q)∪IllegalV (P ,Q)
= ∅, P⊗Q and R are composable and IllegalA(P⊗Q ,R)∪IllegalV (P⊗Q ,R) = ∅,
then Q and R are composable and IllegalA(Q ,R) ∪ IllegalV (Q ,R) = ∅, P and
Q ⊗ R are composable and IllegalA(P ,Q ⊗ R) ∪ IllegalV (P ,Q ⊗ R) = ∅, and
(P ⊗Q)⊗ R = P ⊗ (Q ⊗ R).

www.manaraa.com

364 Z. Cao and H. Wang

The existence of a legal environment indicates that there is a way to use the
interfaces P and Q together without giving rise to incompatibilities. A legal
environment for R needs to satisfy the following side conditions.

Definition 6. An environment for a ZIA R is a ZIA E such that (1) E is
composable with R, (2) E is nonempty, (3) AO

R ⊆ AI
E , (4) AI

R ⊆ AO
E , (5)

VO
R ⊆ V I

E , (6) V
I
R ⊆ VO

E , (7) IllegalA(R,E) = ∅ and (8) IllegalV (R,E) = ∅.

Definition 7. Given two composable ZIAs P and Q , a legal environment E
for the pair (P ,Q) is an environment E for P ⊗ Q such that no state in
(IllegalA(P ,Q) ∪ IllegalV (P ,Q))× SE is reachable in (P ⊗Q)⊗ E .

We define compatibility as the existence of a legal environment:

Definition 8. Two ZIAs P and Q are compatible with respect to E if they are
nonempty, composable, and there exists a legal environment E for (P ,Q).

The composition of two ZIA is obtained by restricting the product of the two
automata to the set of compatible states which are the states from which the
environment can prevent entering illegal states.

Definition 9. Consider two composable ZIAs P and Q . A pair (s , t) ∈ SP ×SQ

of states is compatible with respect to environment E if there is an environment
E for P ⊗ Q such that no state in (IllegalA(P ,Q) ∪ IllegalV (P ,Q)) × SE is
reachable in (P ⊗ Q) ⊗ E from the state {(s , t)}× S i

E . We write CmpE (P ,Q)
for the set of compatible states of P ⊗Q with respect to environment E .

Hence we can rephrase the definition of compatibility for ZIA as follows: two
nonempty composable ZIAs P andQ are compatible with respect to environment
E iff their initial states are compatible with respect to E .

Definition 10. Consider two composable ZIAs P and Q , and an environment E .
The composition P ||E Q is a ZIA with the same action sets as P⊗Q . The states
are SP ||EQ = CmpE (P ,Q), the initial states are S i

P ||EQ = S i
P⊗Q ∩CmpE (P ,Q),

and the steps are TP ||EQ = TP⊗Q ∩(CmpE (P ,Q)×AP⊗Q × CmpE (P ,Q)).

The composition of ZIAs is associative.

Proposition 3. For all ZIAs P , Q , R and E , either both (P ||E Q) ||E R and
P ||E (Q ||E R) are undefined because some of the automata are not composable
or (P ||E Q) ||E R = P ||E (Q ||E R).

4 Refinement Relation

The refinement relation aims at formalizing the relation between abstract and
concrete versions of the same component, for example, between an interface
specification and its implementation.

www.manaraa.com

Extending Interface Automata with Z Notation 365

Roughly, a ZIA P refines a ZIA Q if all the input or output actions of P can
be simulated by Q . To define this concept, we need some preliminary notions.

In order to define the refinement relation between Z schemas, we need the
following notation.

Definition 11. Consider two Z schemas A and B with V I (A) = V I (B),
VO(A) = VO(B) and V H (A) = V H (B) = ∅, where V I (S) (VO (S), V H (S))
denotes the set of input variables (output variables, internal variables) in S . We
use the notation A ≥ B if one of the following cases holds:

(1) If V I (A) �= ∅ and VO(A) �= ∅ then given an assignment ρ on V I (A),
for any assignment σ on VO (A), ρ ∪ σ |= B implies ρ ∪ σ |= A, and given an
assignment σ on VO(A), for any assignment ρ on V I (A), ρ ∪ σ |= A implies
ρ ∪ σ |= B , where ρ |= A means that A is true under assignment ρ, ρ ∪ σ is an
assignment which the union of ρ and σ.

(2) If V I (A) �= ∅ and VO(A) = ∅ then for any assignment ρ on V I (A),
ρ |= A implies ρ |= B .

(3) If V I (A) = ∅ and VO(A) �= ∅ then for any assignment ρ on VO(A),
ρ |= B implies ρ |= A.

(4) V I (A) = ∅ and VO (A) = ∅.

Intuitively, A ≥ B means that schemas A and B have the same input vari-
ables and the same output variables, and schema B has bigger domains of input
variables but smaller ranges of output variables than schema A.

Now we give the refinement relation between Z schemas, which describe the
refinement relation between data structures properties of states.

Definition 12. Given two Z schemas A and B , we use the notation A� B if
(1) V I (A) ⊆ V I (B), VO(A) ⊆ VO(B).
(2) A\(x1, ..., xm) ≥ B\(y1, ..., yn), where {x1, ..., xm} = V (A) − V I (A) −

VO(A), {y1, ..., yn} = V (B)−V I (A)−VO(A).

The precise definition of refinement relation between ZIAs must take into account
the fact that the internal actions of P and Q are independent.

We now give the following definition which describes the set of states after
performing a sequence of internal actions from a given state.

Definition 13. Given a ZIA P and a state s ∈ SP , the set ε − closureP (s) is
the smallest set U ⊆ SP such that (1) s ∈ U and (2) if t ∈ U , a ∈ AH

P , and
(t , a, t∗) ∈ TP then t∗ ∈ U .

The environment of a ZIA P cannot see the internal actions of P . Consequently
if P is at a state s then the environment cannot distinguish between s and any
state in ε− closureP (s).

www.manaraa.com

366 Z. Cao and H. Wang

The following definition describes the set of states after performing several
internal actions and an external action from a given state.

Definition 14. Given a ZIA P , a state s ∈ SP , and an action a ∈ AP , we
let ExtDestP(s , a) = {s∗ | ∃(t , a, t∗) ∈ TP . t ∈ ε − closureP (s) and s∗ ∈
ε− closureP (t

∗)}.

In the following, we give a refinement relation between ZIAs. For ZIAs, a state
has not only behavioural properties but also data properties. Therefore this
refinement relation involves both the refinement relation between behavioural
properties and the refinement relation between data properties.

Definition 15. Consider two ZIAs P and Q . A binary relation R ⊆ SP × SQ is
a refinement from Q to P if for all states s ∈ SP , there exists t ∈ SQ such that
s R t the following conditions hold:

(1) FV
P (s)� FV

Q (t).
(2) For any s∗ ∈ ε − closureP (s), there is a state t∗ ∈ ε − closureQ (t), such

that FS
P (s∗)� FS

Q (t∗), and s∗ R t∗.

(3) For any a ∈ AI
P , if s

∗ ∈ ExtDestP(s , a), there is a state t
∗ ∈ ExtDestQ(t , a),

such that GIA
P (a) ⊆ GIA

Q (a), FA
P (a)� FA

Q (a), FS
P (s∗)� FS

Q(t∗), and s∗ R t∗.

(4) For any a ∈ AO
P , if s

∗ ∈ ExtDestP(s , a), there is a state t
∗ ∈ ExtDestQ(t , a),

such that GOA
P (a) ⊆ GOA

Q (a), FA
P (a)� FA

Q (a), FS
P (s∗)� FS

Q(t∗), and s∗ R t∗.

We write s / t if there is a refinement R such that s R t .
We say that ZIA P is refined by ZIA Q if for some initial states s in P and t

in Q , s is refined by t .

Definition 16. The ZIA Q refines the ZIA P written P / Q if:
there are a state s ∈ S i

P and a state t ∈ S i
Q such that s / t .

The above definitions of refinement relations can be extended to the definitions
of bisimulation relations by adding the symmetric condition of relations.

The following proposition means that / is a partial order relation.

Proposition 4. For all ZIAs P , Q and R, the following claims hold:

(1) P / P .
(2) If P / Q and Q / R, then P / R.

The following propositions state that the resulting specification can be refined
independently, i.e., the approach to refinement is compositional in the sense that
refining the components leads to the refinement of the whole specification.

Proposition 5. Consider three ZIAs P , Q and R such that P and R are com-
posable, Q and R are composable, IllegalA(P ,R) ∪ IllegalV (P ,R) = ∅, and
IllegalA(Q ,R) ∪ IllegalV (Q ,R) = ∅. If P / Q , and for any s ∈ SP , t ∈ SQ

www.manaraa.com

Extending Interface Automata with Z Notation 367

such that s / t , V I (FS
P (s)) ∩ VO

R = V I (FS
Q (t)) ∩ VO

R , V
O (FS

P (s)) ∩ V I
R =

VO(FS
Q (t)) ∩ V I

R, A
I
P (s) ∩ AO

R = AI
Q (t) ∩ AO

R , A
O
P (s) ∩AI

R = AO
Q(t) ∩AI

R, and

for any a in both P and Q , V I (FA
P (a))∩V O

R = V I (FA
Q (a))∩V O

R , V
O (FA

P (a))∩
V I

R = VO(FA
Q (a)) ∩ V I

R, G
IA
P (a) ∩ VO

R = GIA
Q (a) ∩ VO

R , G
OA
P (a) ∩ V I

R =

GOA
Q (a) ∩ V I

R, then P ⊗ R / Q ⊗ R.

Proposition 6. Consider four ZIAs P , Q , R and E such that P and R are
composable, Q and R are composable, E is an environment for P ⊗ R and
Q ⊗ R. If P / Q , and for any s ∈ SP , t ∈ SQ such that for any s / t ,
V I (FS

P (s)) ∩ VO
R = V I (FS

Q (t)) ∩ VO
R , V

O(FS
P (s)) ∩ V I

R = VO(FS
Q (t)) ∩ V I

R,

AI
P (s) ∩ AO

R = AI
Q (t) ∩ AO

R , A
O
P (s) ∩ AI

R = AO
Q(t) ∩ AI

R, and for any a in

both P and Q , V I (FA
P (a)) ∩ VO

R = V I (FA
Q (a)) ∩ VO

R , V
O(FA

P (a)) ∩ V I
R =

VO(FA
Q (a)) ∩ V I

R, G
IA
P (a) ∩ VO

R = GIA
Q (a) ∩ VO

R , G
OA
P ∩ V I

R = GOA
Q (a) ∩ V I

R,
then P ||E R / Q ||E R.

5 Conclusions

This paper proposed a specification approach which is able to describe properties
of both behaviour and data of systems. There are several other works for such
topic. Some examples are LOTOS and Z [2], CSP-OZ [3], and Circus [4]. In this
paper, we define a combination of interface automata and Z, called ZIA. The
composition and refinement relation for ZIAs are also defined and studied. ZIA
is well suited for specification of software components. It provides a techniques
to specify both behaviour and data in a common framework.

References

1. de Alfaro, L., Henzinger, T.A.: Interface Automata. In: The Proceedings of the 9th
Annual ACM Symposium on Foundations of Software Engineering (2001)

2. Derrick, J., Boiten, E., Bowman, H., Steen, M.: Viewpoint Consistency in Z and
LOTOS: A case study. In: Fitzgerald, J.S., Jones, C.B., Lucas, P. (eds.) FME 1997.
LNCS, vol. 1313, pp. 644–664. Springer, Heidelberg (1997)

3. Fischer, C.: CSP-OZ: A combination of Object-Z and CSP. In: FMODDS 1997
(1997)

4. Sampaio, A., Woodcock, J., Cavalcanti, A.: Refinement in Circus. In: Eriksson,
L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 451–470. Springer,
Heidelberg (2002)

5. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall Interna-
tional (UK) Ltd. (1998)

www.manaraa.com

A Specification Language for Reo Connectors

Alexandra Silva

Centrum Wiskunde & Informatica

Abstract. Recent approaches to component-based software engineering
employ coordinating connectors to compose components into software sys-
tems. Reo is a model of component coordination, wherein complex connec-
tors are constructed by composing various types of primitive channels. Reo
automata are a simple and intuitive formal model of context- dependent
connectors, which provided a compositional semantics for Reo.

In this paper, we study Reo automata from a coalgebraic perspective.
This enables us to apply the recently developed coalgebraic theory of gen-
eralized regular expressions in order to derive a specification language,
tailor-made for Reo automata, and sound and complete axiomatizations
with respect to three distinct notions of equivalence: (coalgebraic) bisim-
ilarity, the bisimulation notion studied in the original papers on Reo
automata and trace equivalence. The obtained language is simple, but
nonetheless expressive enough to specify all possible finite Reo automata.
Moreover, it comes equipped with a Kleene-like theorem: we provide al-
gorithms to translate expressions to Reo automata and, conversely, to
compute an expression equivalent to a state in a Reo automaton.

1 Introduction

The holy grail of component-based software engineering is to develop truly
reusable software components that can be sold off-the-shelf and reused to build
software systems [17]. Research on software composition plays a key role in this
quest, as it offers flexible ways of plugging together components. Channel based-
languages, where ‘channels’ or ‘connectors’ are used to compose components into
a system [3,10,1,9], play a prominent in the world of software composition. These
‘languages’ express various coordination patterns exhibiting combinations of syn-
chronisation, mutual exclusion, non-deterministic choice, context-dependent and
state-dependent behaviour. A number of component connector models exist, in-
cluding Reo [1], Ptolemy [11,12], MoCha [10], Manifold [2], BIP [4] and an algebra
of stateless connectors [8].

In this paper, we focus on the coordination language Reo and in a particular
semantic model thereof: Reo automata [6,7]. We present a specification language
for Reo automata, together with a Kleene-like theorem and sound and complete
axiomatizations with respect to three notions of equivalence which enable alge-
braic reasoning on specifications. In order to achieve this, we make use of the
coalgebraic view on systems.

In the last decades, coalgebra has arisen as a prominent candidate for a math-
ematical framework to specify and reason about computer systems. Coalgebraic

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 368–376, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.manaraa.com

A Specification Language for Reo Connectors 369

modeling works, on the surface, as follows: the basic features of a system, such
as non-determinism or probability, are collected and combined in the appropri-
ate way, determining the type of the system. This type (formally, a functor) is
then used to derive a suitable equivalence relation and a universal domain of
behaviors, which allow to reason about equivalence of systems. The strength of
coalgebraic modeling lies in the fact that many important notions are parameter-
ized by the type of the system. Recently, in [16] the coalgebraic view on systems
enabled the development of a framework wherein specification languages and
axiomatizations can uniformly be derived for a large class of systems.

In this paper, we apply the general coalgebraic framework of [16] to Reo
automata. The main contributions of the paper are the following:

1. A coalgebraic characterization of Reo automata and of the bisimulation con-
sidered in [6].

2. A tailor-made language to specify Reo automata.
3. An analogue of Kleene’s theorem for Reo automata, yielding algorithms to

convert expressions to equivalent automata and vice-versa.
4. A sound and complete axiomatization of the language with respect to three

different types of equivalence (bisimilarity, trace semantics and the bisimu-
lation considered in [6]).

The items 2. − 4. partially stem from the general framework of [16]. However,
the only axiomatization derived from the general framework of [16] is that of
bisimilarity. The other two are completely new.

This is a short paper and therefore we omit proofs and discussion of related
work, as well as preliminaries on Reo and Reo automata. This extra material
can be found in the technical report [15].

2 A Specification Language for Reo

In this section, we instantiate the generic framework presented in [16] yielding
a language to specify and to reason about Reo automata.

Definition 1 (Expressions for Reo automata). Given sets of ports Σ and
variables X, the set Exp of expressions for Reo automata is given by the closed
expressions contained in the following BNF, for g ∈ BΣ , f ∈ 2Σ and x ∈ X:

ε :: = ∅ | ε ⊕ ε | μx.γ | x | g↑f(σ)
γ :: = ∅ | γ ⊕ γ | μx.γ | g↑f(σ)
σ:: = ∅ | σ ∪ σ | {ε}

The operator μ in the expression μx.γ functions as a binder for all the occur-
rences of the variable x in γ. Note that the only difference between γ and ε is the
occurrence of x (γ is an expression where x occurs guarded, that is only inside
an expression of the shape g↑f(−)). An expression ε is closed if all variables
x ∈ X occurring in ε are bounded.

www.manaraa.com

370 A. Silva

Intuitively, the expressions ∅, ⊕ and μx.γ are the counterpart of the empty
expression, + and star expressions in classical regular expressions, where they
denoted the empty language, language union and iteration. In our context, the
reader can think of ∅ as the specification of a deadlocked channel, of ⊕ as putting
the specifications of two channels in parallel and of μx.γ as the specification of
a channel with recursive behavior (or in other words, a persistent channel).

Example 1. Even before providing semantics to the expressions above, in order
to give the reader a feeling for which expressions specify Reo channels, we include
in Figure 1 the expressions equivalent to the basic Reo automata.

q

ab|ab

q

ab|ab

ab|a

q

ab|ab
e f

a|a

b|b
Sync LossySync SyncDrain FIFO1

μx.ab↑ab({x}) μx.ab↑ab({x}) ⊕ ab↑a({x})) μx.ab↑ab({x}) e = μx.a↑a(b↑b({x}))
f = μx.b↑b(a↑a({x}))

Fig. 1. Expressions corresponding to the automata for basic Reo channels

We now proceed to provide the set of expressions with a coalgebraic structure,
which will provide operational semantics to the expressions. More precisely, we

will define below a function δ : Exp → P(Exp)BΣ×2Σ

. This will allow us to de-
termine when a state s of a system and an expression ε are bisimilar, s ∼ ε, or
trace equivalent s ∼tr ε.

Definition 2 (Operational semantics). We define δ : Exp → P(Exp)BΣ×2Σ

by induction on the number of nested ocurrences of μ (and structural induction)
as follows:

δ(∅)(〈g, f〉) = ∅
δ(ε1 ⊕ ε2)(〈g, f〉) = δ(ε1)(g, f) ∪ δ(ε2)(g, f)
δ(μx.γ) = δ(γ[μx.γ/x])

δ(g↑f(σ))(〈g′, f ′〉) =

{
δ(σ) f = f ′&g = g′

∅ otherwise

δ(∅) = ∅ δ(σ1 ∪ σ2) = δ(σ1) ∪ δ(σ2) δ({ε}) = {ε}
Note that δ simply interprets each σ, a syntactical representation of a set of
specifications, as the corresponding set.

Having a coalgebra structure on the set of expressions has two advantages:
it provides immediately a natural semantics, using the unique homomorphism
into the final coalgebra (which can be thought of as the universe of behaviors),
and it enables an easy definition on when a state s of a Reo automaton and an
expression ε are bisimilar, s ∼ ε, or trace equivalent s ∼tr ε.

www.manaraa.com

A Specification Language for Reo Connectors 371

3 A Kleene Theorem for Reo Automata

In this section, we present the analogue of Kleene’s theorem for Reo automata.
More precisely, we show how to convert each expression into a Reo automaton
and, conversely, how to compute an expression equivalent to a state of a Reo
automaton.

From Reo Automata to Expressions. We start by proving that for each
state of a Reo automaton it is possible to compute a bisimilar expression. The
expression is built in a similar way as in the classical case of regular expressions
and deterministic automata, by solving a system of equations describing the
transition structure of each state.

Theorem 1 (Kleene’s theorem for Reo automata (part I)). For every
Reo automaton (S, ξ), if S is finite then there exists for any s ∈ S an expression
εs ∈ Exp such that s ∼ εs.

e f

a|a

b|b

In the proof of the above theorem (for details see [15]), a
construction is presented, which we illustrate here by means
of an example. We recall on the left one of the Reo automata
presented in Figure 1. We associate with e and f the variables

x1 and x2, respectively, and we define the expressions A1 = μx1.ψ1 and A2 =
μx2.ψ2, where ψ1 = a↑a({x2}) and ψ2 = b↑b({x1}).Then, we solve the system of
equations above by replacing x1 in the second with the expression A1, yielding
a closed expression, which in turn can substitute x2 in the first equation. This
yields the closed expressions

ε1 = μx1.a↑a({μx2.b↑b({μx1.a↑a({x2})})}) ε2 = μx2.b↑b({μx1.a↑a({x2})})
By construction we have e ∼ ε1 and f ∼ ε2. Note that the expression computed
here is slightly different than the one presented in Figure 1. They are however
equivalent as can be proved using the axioms we shall introduce later or by just
directly constructing a bisimulation. Moreover, we note that computing all the
Ai

j is not really needed. In general, one can solve the system of equations by
eliminating variables in a more convenient way, but we decided in this example
to follow exactly the formalization which we presented above.

s1 s2

a|a a|a

b|b

All the Reo automata we have seen so far were de-
terministic. For the reader to get the intuition of what
happens in the truly non-deterministic case expression-
wise we show the construction above for the automaton on the right. We associate
with s1 and s2 the variables x1 and x2, respectively, and we define A1 = μx1.ψ1

and A2 = μx2.ψ2, where ψ1 and ψ2 are given by

ψ1 = a↑a({x1} ∪ {x2}) ψ2 = b↑b({x1})
Again, we solve the system of two equations, yeilding the expressions

ε1 = A2
1 =μx1.a↑a({x1} ∪ {ε2})}) ε2 = A2

2 =μx2.b↑b({μx1.a↑a({x1} ∪ {x2})})
As before, we have, by construction, s1 ∼ ε1 and s2 ∼ ε2.

www.manaraa.com

372 A. Silva

From Expressions to Reo Automata. The coalgebra structure (Exp, δ) also
provides us with a way of constructing a Reo automaton from an expression ε ∈
Exp, by considering the subcoalgebra 〈ε〉 (intuitively, 〈ε〉 denotes the unraveling
of the automaton generated starting in ε by applying δ). The synthesis of a Reo
automaton from an expression ε ∈ Exp is what we need to be able to state and
prove the second half of Kleene’s theorem for Reo automata.

Theorem 2 (Kleene’s theorem for Reo automata (part II)). For every
expression ε ∈ Exp, there exists a Reo automaton (S, ξ) with S finite and s ∈ S
such that s ∼ ε.

Consider the expression ε1 = μx.ab↑ab({x} ∪ {μy.ab↑ab({y})}). Applying δ we
obtain the following:

δ(ε1)(〈g, f〉) = δ(ab↑ab({ε1} ∪ {μy.ab↑ab({y})}))(〈g, f〉)
= δ({ε1} ∪ {μy.ab↑ab({y})}))
= {ε1, μy.ab↑ab({y})}

The first step of the unraveling then yields the automaton on the left below,
where ε2 = μy.ab↑ab({y}). Applying δ to the new state ε2 = μy.ab↑ab({y}) then
completes the automaton, which we depict below on the right.

ε1 ε2

ab|abab|ab
ε1 ε2

ab|abab|ab ab|ab

4 Sound and Complete Axiomatizations

We present next an equational system for expressions in Exp. We define the
relation ≡ ⊆ Exp×Exp, written infix, as the least reflexive and transitive relation
containing the following identities:

1. (Exp,⊕, ∅) is a join-semilattice

ε ⊕ ε ≡ ε (Idemp) ε1 ⊕ ε2 ≡ ε2 ⊕ ε1 (Commut)
ε1 ⊕ (ε2 ⊕ ε3) ≡ (ε1 ⊕ ε2) ⊕ ε3 (Assoc) ∅ ⊕ ε ≡ ε (Empty)

2. μ is the unique fixed-point.

γ[μx.γ/x] ≡ μx.γ (FP) γ[ε/x] ≡ ε ⇒ μx.γ ≡ ε (Unique)

3. The join-semilattice structure propagates through the expressions.

g↑f(∅) ≡ ∅ (Zero) g↑f(σ1 ∪ σ2) ≡ g↑f(σ1) ⊕ g↑f(σ2) (Dist)

4. ≡ is a congruence.

ε1 ≡ ε2 ⇒ ε[ε1/x] ≡ ε[ε2/x] if x is free in ε (Cong)

5. α-equivalence

μx.γ ≡ μy.γ[y/x] if y is not free in γ (α − equiv)

www.manaraa.com

A Specification Language for Reo Connectors 373

Theorem 3 (Soundness and Completeness (bisimilarity)). The axioma-
tization presented above is sound and complete with respect to bisimilarity, that
is: ε1 ∼ ε2 ⇔ ε1 ≡ ε2

It is interesting to remark that in the axiomatization above one cannot derive
g↑f(ε1 ⊕ ε2) ≡ g↑f(ε1) ⊕ g↑f(ε2). This is similarly to what happens in, for
instance, CCS, where the axiom a.(P + Q) = a.P + a.Q is not valid. It is also
the key point in order to distinguish bisimilarity from trace equivalence.

An interesting observation, which was not at all considered in the general
framework of [16], is that the axiomatization above can be extended with the
axiom above and yield a sound and complete axiomatization for trace semantics.
This is reminiscent of what Rabinovich [14] showed for a fragment of CCS, where
adding to the axiomatization of Milner for bisimilarity the axiom a.(P + Q) =
a.P + a.Q resulted in a sound and complete axiomatization for trace semantics.
The proof of the theorem below follows a similar structure to that of Rabinovich’s
and, for space reasons, we omit it here.

Theorem 4 (Soundness and Completeness (trace semantics)). The
axiomatization presented above, augmented with the axiom

g↑f({ε1 ⊕ ε2}) ≡ g↑f({ε1}) ⊕ g↑f({ε2}) (D1)

is sound and complete with respect to trace semantics, that is:

ε1 ∼tr ε2 ⇔ ε1 ≡ ε2

An interesting feature of the axiomatization(s) above is that ⊕ enables the defi-
nition of a natural order on expressions: ε1 ≤ ε2 ⇔ ε1 ⊕ ε2 ≡ ε2. This opens the
door to study refinement of specifications of Reo automata (or, at the automaton
level notions of simulation).

4.1 Coalgebraic Characterization of ∼R

The definition of bisimulation, which we denote ∼R, considered in [6,7] is dif-
ferent than the notion of coalgebraic bisimilarity which one obtains from the
functor of Reo automata. The definition of ∼R involved atoms and, in fact, in
[7] they showed a two step construction, where in the first step the automaton is
determinized (using the powerset construction, which we recalled in the prelim-
inaries) and in the second step each transition labeled by g|f in the automaton
is replaced by n transitions labeled by αi|f , using the fact that each guard g
is always equivalent to a disjunction of atoms α1 ∨ . . . ∨ αn. The construction
described above had as goal to show that the set 2(AtΣ×Σ)∗ of guarded strings
is the counterpart of formal languages for Reo automata.

It is the aim of this section to show that the definition of ∼R can be recovered
coalgebraically and that the axiomatization above (the one for trace semantics)
can be augmented with two axioms yielding a sound and complete axiomati-
zation with respect to the bisimulation of [6,7]. The key observation is that
the bisimulation of [6,7] can be characterized coalgebraically by the following
diagram

www.manaraa.com

374 A. Silva

X
{·} ��

f

��

P(X)

f�����������������

f†

��

L ��������� 2(AtΣ×Σ)∗

��
2 × P(X)BΣ×2Σ

2×c
�� 2 × P(X)AtΣ×2Σ

2×LA

�� 2 × (2(AtΣ×Σ)∗)A

where c performs the replacement of g|f by αi|f as explained above. It is easy to
show now that the bisimulation of [6,7] which is denoted by ∼R can be recovered
from the above diagram

q1 ∼R q2 ⇔ L({q1}) = L({q2})

Moreover, by analyzing the construction above we discovered which axioms we
have to add to our previous axiomatization.

Theorem 5 (Soundness and Completeness). The axiomatization presented
in the previous section for trace semantics plus the axioms

(b1 ∨ b2)↑f(σ) ≡ b1↑f(σ) ⊕ b2↑f(σ) (∨) (⊥↑f)(σ) ≡ ∅ (⊥)

is sound and complete with respect to ∼R, that is ε1 ∼R ε2 ⇔ ε1 ≡ ε2.

To wrap up this section, we observe that the three equivalences considered in
this paper are related by an inclusion: ∼ ⊆ ∼tr ⊆ ∼R. This means that the
Kleene theorem we presented above for bisimilarity is also valid for the other
two equivalences.

5 Discussion

We have presented a framework to reason about Reo automata, a simple and
compositional model of the coordination language Reo. The framework consists
of (i) a specification language, together with (ii) a Kleene theorem or, more
precisely, algorithms to translate expressions to automata and vice-versa and
(iii) axiomatizations which enable equational reasoning on expressions. We con-
sidered three axiomatizations which are sound and complete with respect to,
respectively, bisimilarity, trace equivalence and the bisimulation of [6,7].

The framework presented in this paper is still in its early stages: there are
improvements needed to turn it into a practical language. However, we believe
it sets the base of an interesting framework for Reo, which will allow the use
of powerful existing tools, in order to perform verification, synthesis and model-
checking of Reo circuits. For instance, the general framework of [16] was recently
implemented in the automatic theorem prover Circ [13,5]. In [5], the authors
proved that it is always possible to automatically decide if two expressions are
bisimilar. This enables automatic reasoning on the language presented in this
paper. We would like to (i) integrate the framework of [5] in the Eclipe tool-suite
of Reo; (ii) extend the Circ framework of [5] in order to also automatically prove
different equivalences of expressions, such as trace equivalence.

www.manaraa.com

A Specification Language for Reo Connectors 375

Another research direction is to investigate how to model composition of con-
nectors at the expression level. We have preliminary results on this which suggest
that this is not only possible but also not very difficult. Once the composition
operator is part of the language it is a natural question whether it is possible to
easily prove (algebraically or coalgebraically) interesting properties such as, for
instance, that the Sync channel is an identity element for the composition. Fur-
ther, casting the framework we presented in this paper in a bialgebraic setting
would enable adding new operators, specified by structural operational semantic
rules, to the language. Also introducing syntactic sugar would improve the us-
ability of the language (for example, b � a could denote b only fires if a also fires
and would be translated to a long expression containing all the possible firings
containing ab or only a).

Recently, Reo was extended with stochastic information and a quantitative
version of Reo automata was proposed as an operational model. Extending the
language in order to incorporate stochastic values is an interesting research path,
as well as studying if Circ can be used to perform quantitative analysis or to
model check quantitative Reo.

Encoding translation of other models into the language could also yield useful
results. For instance, properties such as the one mentioned above, of Sync being
identity in the composition, could then be automatically checked in Circ for
several semantic models of Reo.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3), 329–366 (2004)

2. Arbab, F., Herman, I., Spilling, P.: An overview of Manifold and its implementa-
tion. Concurrency - Practice and Experience 5(1), 23–70 (1993)

3. Barbosa, M.A., Barbosa, L.S., Campos, J.C.: Towards a coordination model for
interactive systems. Electronic Notes in Theoretical Computer Science 183, 89–103
(2007)

4. Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in BIP.
IEEE Trans. Computers 57(10), 1315–1330 (2008)

5. Bonsangue, M., Caltais, G., Goriac, E.-I., Lucanu, D., Rutten, J., Silva, A.: A
Decision Procedure for Bisimilarity of Generalized Regular Expressions. In: Davies,
J., Silva, L., Simão, A. (eds.) SBMF 2010. LNCS, vol. 6527, pp. 226–241. Springer,
Heidelberg (2011)

6. Bonsangue, M.M., Clarke, D., Silva, A.: Automata for Context-Dependent Con-
nectors. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS,
vol. 5521, pp. 184–203. Springer, Heidelberg (2009)

7. Bonsangue, M.M., Clarke, D., Silva, A.: A model of context-dependent component
connectors. Science of Computer Programming (2010)

8. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor.
Comput. Sci. 366(1-2), 98–120 (2006)

9. Fiadeiro, J.L., Lopes, A.: Community on the Move: Architectures for Distribution
and Mobility. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2003. LNCS, vol. 3188, pp. 177–196. Springer, Heidelberg (2004)

www.manaraa.com

376 A. Silva

10. Scholten, J.V.G.: Mobile channels for exogenous coordination of distributed sys-
tems: semantics, implementation and composition. PhD thesis, LIACS, Faculty of
Mathematics and Natural Sciences, Leiden University (January 2007)

11. Lee, B., Lee, E.A.: Hierarchical concurrent finite state machines in Ptolemy. In:
ACSD, pp. 34–40. IEEE Computer Society (1998)

12. Liu, X., Xiong, Y., Lee, E.A.: The Ptolemy II framework for visual languages. In:
HCC, pp. 50–51. IEEE Computer Society (2001)

13. Lucanu, D., Roşu, G.: CIRC: A Circular Coinductive Prover. In: Mossakowski, T.,
Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 372–378.
Springer, Heidelberg (2007)

14. Rabinovich, A.M.: A Complete Axiomatisation for Trace Congruence of Finite
State Behaviors. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D.
(eds.) MFPS 1993. LNCS, vol. 802, pp. 530–543. Springer, Heidelberg (1994)

15. Silva, A.: A specification language for Reo connectors. Technical report, Centrum
Wiskunde & Informatica (February 2011)

16. Silva, A., Bonsangue, M.M., Rutten, J.J.M.M.: Non-deterministic Kleene coalge-
bras. Logical Methods in Computer Science 6(3) (2010)

17. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd
edn. Addison-Wesley Professional (2002)

www.manaraa.com

Author Index

Aceto, Luca 32, 268
Asaadi, Hamid Reza 253

Barbosa, Manuel 316
Bergstra, Jan A. 15
Birgisson, Arnar 32

Cao, Zining 359
Costa, David 335
Courbis, Roméo 299

Daneshtalab, Masoud 236
de Frutos Escrig, David 268
Demangeon, Romain 128
Deng, Yuxin 143

Fábregas, Ignacio 268
Fu, Hongfei 284
Fu, Yuxi 284

Groote, Jan Friso 112

Haghighi, Hassan 80
Hansen, Hallstein Asheim 206
He, Chaodong 284
Hennessy, Matthew 143
Hildebrandt, Thomas 343
Hirschkoff, Daniel 128
Hwong, Yi-Ling 174

Ingólfsdóttir, Anna 32, 268

Jaghoori, Mohammad Mahdi 96
Javanmard, Mohammad Mahdi 80
Johnsen, Einar Broch 158

Kamali, Maryam 236
Katoen, Joost-Pieter 1
Khosravi, Ramtin 253, 351
Kim, Minyoung 190
Kolahdouz-Rahimi, Shekoufeh 48
Kouters, Tim W.D.M. 112
Kusters, Vincent J.J. 174

Lambertz, Christian 64
Lano, Kevin 48
Li, Mingshu 221

Mai Thuong Tran, Thi 158
Majster-Cederbaum, Mila 64
Moss, Andrew 316
Mousavi, MohammadReza 32, 253
Mukkamala, Raghava Rao 343

Niqui, Milad 335
Noroozi, Neda 253

Osaiweran, Ammar 112
Owe, Olaf 158

Page, Dan 316
Palomino, Miguel 268
Petre, Luigia 236
Ponse, Alban 15

Rodrigues, Nuno F. 316
Rutten, Jan 335

Sabouri, Hamideh 351
Sangiorgi, Davide 128
Schneider, Gerardo 206
Sere, Kaisa 236
Silva, Alexandra 368
Silva, Paulo F. 316
Slaats, Tijs 343
Steffen, Martin 158, 206
Stehr, Mark-Oliver 190

Talcott, Carolyn 190

Wang, Hui 359
Willemse, Tim A.C. 174

Yang, Qiusong 221

Zhai, Jian 221
Zhang, Bei 221

	7141
	Preface
	Organization
	Table of Contents
	Model Checking: One Can Do Much More Than You Think!
	Introduction
	Systems Biology: Enzyme Kinetics
	Optimal Battery Scheduling
	Stochastic Scheduling
	Concluding Remarks
	References

	Proposition Algebra and Short-Circuit Logic
	Introduction
	Proposition Algebras and HMAs
	Free Short-Circuit Logic: FSCL
	Contractive Congruence
	Memorizing Congruence
	Static Congruence (Propositional Logic)
	Discussion
	References

	Decompositional Reasoning about the History of Parallel Processes
	Introduction
	Preliminaries
	Decomposing Computations
	Decompositional Reasoning
	Adding Recursion to HML*
	Extensions and Further Related Work
	References

	A Model-Based Development Approach for Model Transformations
	Introduction
	Semantic Framework for Model Transformations
	Metamodelling Framework
	Model Transformation Semantics
	Model Transformation Correctness

	Specification Techniques for Model Transformations
	Transformation Specification in UML-RSDS
	Development Process for Model Transformations

	Case Studies
	Requirements
	Abstract Specification
	Explicit Specification and Design
	Implementation
	Other Case Studies

	Related Work
	Conclusions
	References

	Analyzing Component-Based Systems on the Basis of Architectural Constraints
	Introduction
	Modeling Interacting Components
	Exploiting Disjoint Circular Wait Freedom
	Refinement: Problematic States Reachability
	Evaluation of the Exclusive Communication Factor
	Conclusion and Related Work
	References

	Constructive Development of Probabilistic Programs
	Introduction
	Preliminaries
	CZ Set Theory
	Interpretation of CZ in Martin-Löf's Theory of Types

	Specifying Probabilistic Operations
	A New Interpretation of Probabilistic Schemas
	A Calculus for Probabilistic Schemas
	Conclusions and Future Work
	References

	Composing Real-Time Concurrent Objects Refinement, Compatibility and Schedulability
	Introduction
	Timed Automata
	Timed I/O Automata
	Refinement for Timed I/O Automata

	Timed I/O Automata with Deadlines
	Checking Refinement in Uppaal

	Real-Time Concurrent Objects
	Real-Time Distributed Systems
	Conclusions and Future Work
	References

	Specification Guidelines to Avoid the State Space Explosion Problem
	Introduction
	Overview of Design Guidelines
	Guideline I: Information Polling
	Guideline II: Use Global Synchronous Communication
	Guideline III: Avoid Parallelism among Components
	Guideline IV: Restrict the Use of Data
	Guideline V: Specify External Behaviour of Sets of Sub-components
	Conclusion
	References

	Strong Normalisation in λ-Calculi with References
	Motivations
	λref: A λ-Calculus with References
	Syntax and Semantics for λref
	Types and Reduction

	Termination of λref Programs
	Defining a Projection from λref to λST
	Simulation Result
	Deriving Soundness

	Parametricity
	References

	Compositional Reasoning for Markov Decision Processes
	Introduction
	Simulations for Weighted Markov Decision Processes
	Hyper-derivations
	(Amortised Weighted) Simulations

	A Qualitative Probabilistic Logic
	Benefits Based Testing
	Concluding Remarks
	References

	Safe Locking for Multi-threaded Java
	Introduction
	AConcurrent, Object-Oriented Calculus
	Operational Semantics
	TheType and Effect System
	Correctness
	Related Work
	Conclusion
	References

	Analysing the Control Software of the Compact Muon Solenoid Experiment at the Large Hadron Collider
	Introduction
	The State Manager Language
	A Formal Semantics for SML
	A Brief Overview of mCRL2
	From SML to mCRL2
	Validating the Formalisation of SML

	Dedicated Tooling for Verification
	Conclusion
	References

	A Distributed Logic for Networked Cyber-Physical Systems
	Introduction
	Case Study: Self-organizing Robots
	The Distributed Logical Framework
	Properties of the Logical Framework
	Related Work
	Conclusion and Future Directions
	References

	Reachability Analysis of Non-linear Planar Autonomous Systems
	Introduction
	Background
	Refinement Algorithm
	Prototype Implementation
	Case Studies

	Related Work
	Refinement
	Approximation
	Comparison with Other Tools

	Conclusion
	References

	Attacking the Dimensionality Problem of Parameterized Systems via Bounded Reachability Graphs
	Introduction
	Parameterized Systems
	Definition
	Verification of Parameterized Systems

	Overall Approach
	Bounded Backward Reachability Graphs
	Experimental Results
	Experiment Setup
	Experiment Results

	Related Work
	Conclusion
	References

	Refinement-Based Modeling of 3D NoCs
	Introduction
	Preliminaries
	Three Abstract Models for the 3D NoC: M0, M1, M2
	The Initial Model M0
	The Second Model M1
	The Third Model M2

	Case Study: The XYZ Routing Algorithm
	Verification of the Models
	Conclusions
	References

	Towards Model-Based Testing of Electronic Funds Transfer Systems
	Introduction
	EFT Switch Functionality
	Testing Approach
	IOCO Testing
	The Testing Infrastructure

	Modeling the EFT Switch
	Testing the EFT Switch
	Interfacing Switch and TRON
	Classifying and Covering Data Domains

	Test Results
	Discussion
	Related Work
	Conclusions and Future Work
	References

	Relating Modal Refinements, Covariant-Contravariant Simulations and Partial Bisimulations
	Introduction
	Preliminaries
	From Covariant-Contravariant Simulations to Modal Refinements
	From Modal Refinements to Covariant-Contravariant Simulations
	Discussion of the Translations
	Partial Bisimulation
	Institutions and Institution Morphisms
	Conclusions and Future Work
	References

	Decidability of Behavioral Equivalences in Process Calculi with Name Scoping
	Introduction
	Basic Definition and Notation
	Undecidability of Strong Bisimilarity
	Undecidability of CCS CCS
	Undecidability of CCS! CCS!

	Strong (Bi)similarity on Finite State Processes
	Undecidability of CCS! FS
	Decidability of CCS! FS
	Decidability Results of Simulation Preorder

	Concluding Remark
	References

	Rewriting Approximations for Properties Verification over CCS Specifications
	Introduction
	Preliminaries
	Terms and TRSs
	Tree Automata Completion
	The Calculus of Communicating Systems

	Rewriting Approximations for CCS
	Representation of a CCS Program and Semantics with Terms and TRS

	The Alternating Bit Protocol Verification
	The Alternating Bit Protocol Description
	Modeling the ABP
	Verifying the ABP

	Hardware Components Verification
	The Lockable Component
	The RGDA Component

	Conclusion and Related Works
	References

	Type Checking Cryptography Implementations
	Introduction
	A Closer Look at CAO
	CAO Type System in Action
	Formalisation of the CAO Type System
	CAO Type System

	Implementation
	Soundness of the Type System
	Related Work
	Conclusion
	References

	Intentional Automata: A Context-Dependent Model for Component Connectors
	Introduction
	Preliminaries
	Intentional Automata
	Connector Equivalence and Operations on Automata

	Reo Automata
	References

	Nested Dynamic Condition Response Graphs
	Introduction
	Nested DCR Graphs and Milestones
	Semantics
	Conclusion and Future Work
	References

	Efficient Verification of Evolving Software Product Lines
	Introduction
	Product Line Modeling
	PL-CCS

	Verification of Evolved Product Line
	Reusing the State Space
	Reusing the Result of Verification

	Results
	Conclusion
	References

	Extending Interface Automata with Z Notation
	Introduction
	Interface Automata with Z Notation
	Composition
	Refinement Relation
	Conclusions
	References

	A Specification Language for Reo Connectors
	Introduction
	A Specification Language for Reo
	A Kleene Theorem for Reo Automata
	Sound and Complete Axiomatizations
	Coalgebraic Characterization of R

	Discussion
	References

	Author Index

